//myHelpers/Algorithms.h //Matthew Ellison // Created: 03-10-19 //Modified: 03-10-19 //This file contains the declarations and implementations to several algorithms that I have found useful /* Copyright (C) 2019 Matthew Ellison This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #ifndef ALGORITHMS_H #define ALGORITHMS_H #include #include #include #include "DynamicInt64Array.h" //This is a function that performs a bubble sort on an array of int64_t void bubbleSortInt64(int64_t* nums, uint64_t size){ //Keep track of elements that have been sorted for(uint64_t sorted = 0;sorted < size;++sorted){ //Look at every element in the ary, moving the largest element to the end for(uint64_t location = 1;location < (size - sorted);++location){ //If the current element is smaller than the last swap them if(nums[location] < nums[location - 1]){ int64_t temp = nums[location]; nums[location] = nums[location - 1]; nums[location - 1] = temp; } } } } //This is a helper function of quickSortInt64. It chooses a pivot element and sort everything to larger and smaller sides uint64_t partitionInt64(int64_t* ary, uint64_t bottom, uint64_t top){ int64_t pivot = ary[top]; //Choose a pivot element int64_t smaller = bottom - 1; //Keep track of the location of all elements smaller than pivot //Loop through the array, looking for elements that are smaller than pivot and move them to the front of the array for(uint64_t location = bottom;location < top;++location){ //If the current element is smaller than the pivot move it to the front of the array and move the tracker if(ary[location] < pivot){ ++smaller; //Increment the smaller than location tracker //Swap the element to the correct location int64_t temp = ary[location]; ary[location] = ary[smaller]; ary[smaller] = temp; } } //Move the pivot element to the corrent location ++smaller; int64_t temp = ary[smaller]; ary[smaller] = ary[top]; ary[top] = temp; //Return the location of the pivot element return smaller; } //This is a function that performs a quick sort on an array of int64_t void quickSortInt64(int64_t* nums, uint64_t bottom, uint64_t top){ //Make sure you are working on a valid slice of the array if(bottom < top){ //Get the pivot element uint64_t pivot = partitionInt64(nums, bottom, top); //Sort all elements smaller than the pivot quickSortInt64(nums, bottom, pivot - 1); //Sort all elements larger than the pivot quickSortInt64(nums, pivot + 1, top); } } //This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers struct DynamicInt64Array getPrimes(int64_t goalNumber){ struct DynamicInt64Array primes; initDynamicInt64Array(&primes); bool foundFactor = false; //If the number is 1, 0, or a negative number return an empty vector if(goalNumber <= 1){ return primes; } else{ pushBackDynamicInt64Array(&primes, 2); } //We can now start at 3 and skip all of the even numbers for(int64_t possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){ //Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself uint64_t topPossibleFactor = ceil(sqrt(possiblePrime)); for(uint64_t cnt = 0;(cnt < primes.size) && (primes.ptr[cnt] <= topPossibleFactor);++cnt){ if((possiblePrime % primes.ptr[cnt]) == 0){ foundFactor = true; break; } } //If you didn't find a factor then it must be prime if(!foundFactor){ pushBackDynamicInt64Array(&primes, possiblePrime); } //If you did find a factor you need to reset the flag else{ foundFactor = false; } } bubbleSortDynamicInt64Array(&primes); return primes; } //This function returns a DynamicInt64Array with a specific number of primes struct DynamicInt64Array getNumPrimes(int64_t numberOfPrimes){ struct DynamicInt64Array primes; initDynamicInt64Array(&primes); reserveDynamicInt64Array(&primes, numberOfPrimes); //Saves cycles later bool foundFactor = false; //If the number is 1, 0, or a negative number return an empty vector if(numberOfPrimes <= 1){ return primes; } //Otherwise 2 is the first prime number else{ pushBackDynamicInt64Array(&primes, 2); } //Loop through every odd number starting at 3 until we find the requisite number of primes //Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop for(int64_t possiblePrime = 3;(primes.size < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){ //Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself uint64_t topPossibleFactor = ceil(sqrt(possiblePrime)); for(uint64_t cnt = 0;(cnt < primes.size) && (getDynamicInt64Array(&primes, cnt) <= topPossibleFactor);++cnt){ if((possiblePrime % getDynamicInt64Array(&primes, cnt)) == 0){ foundFactor = true; break; } } //If you didn't find a factor then it must be prime if(!foundFactor){ pushBackDynamicInt64Array(&primes, possiblePrime); } //If you did find a factor you need to reset the flag else{ foundFactor = false; } } //The numbers should be in order, but sort them anyway just in case bubbleSortDynamicInt64Array(&primes); return primes; } //This function returns all primes factors of a number struct DynamicInt64Array getFactors(int64_t goalNumber){ //Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber) struct DynamicInt64Array primes = getPrimes((int64_t)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type struct DynamicInt64Array factors; initDynamicInt64Array(&factors); //Need to step through each prime and see if it is a factor of the number for(int64_t cnt = 0;cnt < primes.size;){ if((goalNumber % getDynamicInt64Array(&primes, cnt)) == 0){ pushBackDynamicInt64Array(&factors, getDynamicInt64Array(&primes, cnt)); goalNumber /= getDynamicInt64Array(&primes, cnt); } else{ ++cnt; } } //If it didn't find any factors in the primes the number itself must be prime if(factors.size == 0){ pushBackDynamicInt64Array(&factors, goalNumber); goalNumber /= goalNumber; } ///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors return factors; } //This is a function that gets all the divisors of num and returns a DynamicInt64Array containing the divisors struct DynamicInt64Array getDivisors(int64_t num){ struct DynamicInt64Array divisors; //Holds the number of divisors initDynamicInt64Array(&divisors); //Ensure the parameter is a valid number if(num <= 0){ return divisors; } else if(num == 1){ pushBackDynamicInt64Array(&divisors, 1); return divisors; } //You only need to check up to sqrt(num) int64_t topPossibleDivisor = ceil(sqrt(num)); for(int64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){ //Check if the counter evenly divides the number //If it does the counter and the other number are both divisors if((num % possibleDivisor) == 0){ //We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates pushBackDynamicInt64Array(&divisors, possibleDivisor); //We still need to account for sqrt(num) being a divisor if(possibleDivisor != topPossibleDivisor){ pushBackDynamicInt64Array(&divisors, (num / possibleDivisor)); } //Take care of a few occations where a number was added twice if(getDynamicInt64Array(&divisors, (divisors.size - 1)) == (possibleDivisor + 1)){ ++possibleDivisor; } } } //Sort the vector for neatness bubbleSortDynamicInt64Array(&divisors); //Return the vector of divisors return divisors; } //This function returns the numth Fibonacci number int64_t getFib(const int64_t num){ //Make sure the number is within bounds if(num <= 2){ return 1; } //Setup the variables int64_t fib = 0; int64_t tempNums[3]; tempNums[0] = tempNums[1] = 1; //Do the calculation unsigned int cnt; for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){ tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3]; } fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0 return fib; } //This function returns a DynamicInt64Array that includes all Fibonacci numbers <= num struct DynamicInt64Array getAllFib(const int64_t num){ struct DynamicInt64Array fibList; initDynamicInt64Array(&fibList); //Make sure the number is within bounds if(num <= 1){ pushBackDynamicInt64Array(&fibList, 1); return fibList; } else{ //Make sure to add the first 2 elements pushBackDynamicInt64Array(&fibList, 1); pushBackDynamicInt64Array(&fibList, 1); } //Setup the variables int64_t fib = 0; int64_t tempNums[3]; tempNums[0] = tempNums[1] = 1; //Do the calculation and add each number to the vector for(int64_t cnt = 2;(tempNums[(cnt - 1) % 3] < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){ tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3]; pushBackDynamicInt64Array(&fibList, tempNums[cnt % 3]); } //If you triggered the exit statement you have one more element than you need popBackDynamicInt64Array(&fibList); //Return the vector that contains all of the Fibonacci numbers return fibList; } #endif //ALGORITHMS_H