//myHelpers/Algorithms.h
//Matthew Ellison
// Created: 03-10-19
//Modified: 03-10-19
//This file contains the declarations and implementations to several algorithms that I have found useful
/*
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#ifndef ALGORITHMS_H
#define ALGORITHMS_H
#include
#include
#include
#include "DynamicInt64Array.h"
//This is a function that performs a bubble sort on an array of int64_t
void bubbleSortInt64(int64_t* nums, uint64_t size){
//Keep track of elements that have been sorted
for(uint64_t sorted = 0;sorted < size;++sorted){
//Look at every element in the ary, moving the largest element to the end
for(uint64_t location = 1;location < (size - sorted);++location){
//If the current element is smaller than the last swap them
if(nums[location] < nums[location - 1]){
int64_t temp = nums[location];
nums[location] = nums[location - 1];
nums[location - 1] = temp;
}
}
}
}
//This is a helper function of quickSortInt64. It chooses a pivot element and sort everything to larger and smaller sides
uint64_t partitionInt64(int64_t* ary, uint64_t bottom, uint64_t top){
int64_t pivot = ary[top]; //Choose a pivot element
int64_t smaller = bottom - 1; //Keep track of the location of all elements smaller than pivot
//Loop through the array, looking for elements that are smaller than pivot and move them to the front of the array
for(uint64_t location = bottom;location < top;++location){
//If the current element is smaller than the pivot move it to the front of the array and move the tracker
if(ary[location] < pivot){
++smaller; //Increment the smaller than location tracker
//Swap the element to the correct location
int64_t temp = ary[location];
ary[location] = ary[smaller];
ary[smaller] = temp;
}
}
//Move the pivot element to the corrent location
++smaller;
int64_t temp = ary[smaller];
ary[smaller] = ary[top];
ary[top] = temp;
//Return the location of the pivot element
return smaller;
}
//This is a function that performs a quick sort on an array of int64_t
void quickSortInt64(int64_t* nums, uint64_t bottom, uint64_t top){
//Make sure you are working on a valid slice of the array
if(bottom < top){
//Get the pivot element
uint64_t pivot = partitionInt64(nums, bottom, top);
//Sort all elements smaller than the pivot
quickSortInt64(nums, bottom, pivot - 1);
//Sort all elements larger than the pivot
quickSortInt64(nums, pivot + 1, top);
}
}
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
struct DynamicInt64Array getPrimes(int64_t goalNumber){
struct DynamicInt64Array primes;
initDynamicInt64Array(&primes);
bool foundFactor = false;
//If the number is 1, 0, or a negative number return an empty vector
if(goalNumber <= 1){
return primes;
}
else{
pushBackDynamicInt64Array(&primes, 2);
}
//We can now start at 3 and skip all of the even numbers
for(int64_t possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
for(uint64_t cnt = 0;(cnt < primes.size) && (primes.ptr[cnt] <= topPossibleFactor);++cnt){
if((possiblePrime % primes.ptr[cnt]) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
pushBackDynamicInt64Array(&primes, possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
bubbleSortDynamicInt64Array(&primes);
return primes;
}
//This function returns a DynamicInt64Array with a specific number of primes
struct DynamicInt64Array getNumPrimes(int64_t numberOfPrimes){
struct DynamicInt64Array primes;
initDynamicInt64Array(&primes);
reserveDynamicInt64Array(&primes, numberOfPrimes); //Saves cycles later
bool foundFactor = false;
//If the number is 1, 0, or a negative number return an empty vector
if(numberOfPrimes <= 1){
return primes;
}
//Otherwise 2 is the first prime number
else{
pushBackDynamicInt64Array(&primes, 2);
}
//Loop through every odd number starting at 3 until we find the requisite number of primes
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
for(int64_t possiblePrime = 3;(primes.size < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
for(uint64_t cnt = 0;(cnt < primes.size) && (getDynamicInt64Array(&primes, cnt) <= topPossibleFactor);++cnt){
if((possiblePrime % getDynamicInt64Array(&primes, cnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
pushBackDynamicInt64Array(&primes, possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
//The numbers should be in order, but sort them anyway just in case
bubbleSortDynamicInt64Array(&primes);
return primes;
}
//This function returns all primes factors of a number
struct DynamicInt64Array getFactors(int64_t goalNumber){
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
struct DynamicInt64Array primes = getPrimes((int64_t)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
struct DynamicInt64Array factors;
initDynamicInt64Array(&factors);
//Need to step through each prime and see if it is a factor of the number
for(int64_t cnt = 0;cnt < primes.size;){
if((goalNumber % getDynamicInt64Array(&primes, cnt)) == 0){
pushBackDynamicInt64Array(&factors, getDynamicInt64Array(&primes, cnt));
goalNumber /= getDynamicInt64Array(&primes, cnt);
}
else{
++cnt;
}
}
//If it didn't find any factors in the primes the number itself must be prime
if(factors.size == 0){
pushBackDynamicInt64Array(&factors, goalNumber);
goalNumber /= goalNumber;
}
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
return factors;
}
//This is a function that gets all the divisors of num and returns a DynamicInt64Array containing the divisors
struct DynamicInt64Array getDivisors(int64_t num){
struct DynamicInt64Array divisors; //Holds the number of divisors
initDynamicInt64Array(&divisors);
//Ensure the parameter is a valid number
if(num <= 0){
return divisors;
}
else if(num == 1){
pushBackDynamicInt64Array(&divisors, 1);
return divisors;
}
//You only need to check up to sqrt(num)
int64_t topPossibleDivisor = ceil(sqrt(num));
for(int64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
//Check if the counter evenly divides the number
//If it does the counter and the other number are both divisors
if((num % possibleDivisor) == 0){
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
pushBackDynamicInt64Array(&divisors, possibleDivisor);
//We still need to account for sqrt(num) being a divisor
if(possibleDivisor != topPossibleDivisor){
pushBackDynamicInt64Array(&divisors, (num / possibleDivisor));
}
//Take care of a few occations where a number was added twice
if(getDynamicInt64Array(&divisors, (divisors.size - 1)) == (possibleDivisor + 1)){
++possibleDivisor;
}
}
}
//Sort the vector for neatness
bubbleSortDynamicInt64Array(&divisors);
//Return the vector of divisors
return divisors;
}
//This function returns the numth Fibonacci number
int64_t getFib(const int64_t num){
//Make sure the number is within bounds
if(num <= 2){
return 1;
}
//Setup the variables
int64_t fib = 0;
int64_t tempNums[3];
tempNums[0] = tempNums[1] = 1;
//Do the calculation
unsigned int cnt;
for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
}
fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
return fib;
}
//This function returns a DynamicInt64Array that includes all Fibonacci numbers <= num
struct DynamicInt64Array getAllFib(const int64_t num){
struct DynamicInt64Array fibList;
initDynamicInt64Array(&fibList);
//Make sure the number is within bounds
if(num <= 1){
pushBackDynamicInt64Array(&fibList, 1);
return fibList;
}
else{ //Make sure to add the first 2 elements
pushBackDynamicInt64Array(&fibList, 1);
pushBackDynamicInt64Array(&fibList, 1);
}
//Setup the variables
int64_t fib = 0;
int64_t tempNums[3];
tempNums[0] = tempNums[1] = 1;
//Do the calculation and add each number to the vector
for(int64_t cnt = 2;(tempNums[(cnt - 1) % 3] < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
pushBackDynamicInt64Array(&fibList, tempNums[cnt % 3]);
}
//If you triggered the exit statement you have one more element than you need
popBackDynamicInt64Array(&fibList);
//Return the vector that contains all of the Fibonacci numbers
return fibList;
}
#endif //ALGORITHMS_H