mirror of
https://bitbucket.org/Mattrixwv/myhelpers.git
synced 2025-12-06 18:43:59 -05:00
291 lines
9.9 KiB
C
291 lines
9.9 KiB
C
//myHelpers/Algorithms.h
|
|
//Matthew Ellison
|
|
// Created: 03-10-19
|
|
//Modified: 03-10-19
|
|
//This file contains the declarations and implementations to several algorithms that I have found useful
|
|
/*
|
|
Copyright (C) 2019 Matthew Ellison
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef ALGORITHMS_H
|
|
#define ALGORITHMS_H
|
|
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include "DynamicInt64Array.h"
|
|
|
|
//This is a function that performs a bubble sort on an array of int64_t
|
|
void bubbleSortInt64(int64_t* nums, uint64_t size){
|
|
//Keep track of elements that have been sorted
|
|
for(uint64_t sorted = 0;sorted < size;++sorted){
|
|
//Look at every element in the ary, moving the largest element to the end
|
|
for(uint64_t location = 1;location < (size - sorted);++location){
|
|
//If the current element is smaller than the last swap them
|
|
if(nums[location] < nums[location - 1]){
|
|
int64_t temp = nums[location];
|
|
nums[location] = nums[location - 1];
|
|
nums[location - 1] = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//This is a helper function of quickSortInt64. It chooses a pivot element and sort everything to larger and smaller sides
|
|
uint64_t partitionInt64(int64_t* ary, uint64_t bottom, uint64_t top){
|
|
int64_t pivot = ary[top]; //Choose a pivot element
|
|
int64_t smaller = bottom - 1; //Keep track of the location of all elements smaller than pivot
|
|
|
|
//Loop through the array, looking for elements that are smaller than pivot and move them to the front of the array
|
|
for(uint64_t location = bottom;location < top;++location){
|
|
//If the current element is smaller than the pivot move it to the front of the array and move the tracker
|
|
if(ary[location] < pivot){
|
|
++smaller; //Increment the smaller than location tracker
|
|
|
|
//Swap the element to the correct location
|
|
int64_t temp = ary[location];
|
|
ary[location] = ary[smaller];
|
|
ary[smaller] = temp;
|
|
}
|
|
}
|
|
|
|
//Move the pivot element to the corrent location
|
|
++smaller;
|
|
int64_t temp = ary[smaller];
|
|
ary[smaller] = ary[top];
|
|
ary[top] = temp;
|
|
|
|
//Return the location of the pivot element
|
|
return smaller;
|
|
}
|
|
|
|
//This is a function that performs a quick sort on an array of int64_t
|
|
void quickSortInt64(int64_t* nums, uint64_t bottom, uint64_t top){
|
|
//Make sure you are working on a valid slice of the array
|
|
if(bottom < top){
|
|
//Get the pivot element
|
|
uint64_t pivot = partitionInt64(nums, bottom, top);
|
|
|
|
//Sort all elements smaller than the pivot
|
|
quickSortInt64(nums, bottom, pivot - 1);
|
|
//Sort all elements larger than the pivot
|
|
quickSortInt64(nums, pivot + 1, top);
|
|
}
|
|
}
|
|
|
|
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
|
|
struct DynamicInt64Array getPrimes(int64_t goalNumber){
|
|
struct DynamicInt64Array primes;
|
|
initDynamicInt64Array(&primes);
|
|
bool foundFactor = false;
|
|
|
|
//If the number is 1, 0, or a negative number return an empty vector
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
else{
|
|
pushBackDynamicInt64Array(&primes, 2);
|
|
}
|
|
//We can now start at 3 and skip all of the even numbers
|
|
for(int64_t possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
|
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
|
for(uint64_t cnt = 0;(cnt < primes.size) && (primes.ptr[cnt] <= topPossibleFactor);++cnt){
|
|
if((possiblePrime % primes.ptr[cnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
}
|
|
//If you didn't find a factor then it must be prime
|
|
if(!foundFactor){
|
|
pushBackDynamicInt64Array(&primes, possiblePrime);
|
|
}
|
|
//If you did find a factor you need to reset the flag
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
quickSortDynamicInt64Array(&primes);
|
|
return primes;
|
|
}
|
|
|
|
//This function returns a DynamicInt64Array with a specific number of primes
|
|
struct DynamicInt64Array getNumPrimes(int64_t numberOfPrimes){
|
|
struct DynamicInt64Array primes;
|
|
initDynamicInt64Array(&primes);
|
|
reserveDynamicInt64Array(&primes, numberOfPrimes); //Saves cycles later
|
|
bool foundFactor = false;
|
|
|
|
//If the number is 1, 0, or a negative number return an empty vector
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise 2 is the first prime number
|
|
else{
|
|
pushBackDynamicInt64Array(&primes, 2);
|
|
}
|
|
|
|
//Loop through every odd number starting at 3 until we find the requisite number of primes
|
|
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
|
|
for(int64_t possiblePrime = 3;(primes.size < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
|
|
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
|
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
|
for(uint64_t cnt = 0;(cnt < primes.size) && (getDynamicInt64Array(&primes, cnt) <= topPossibleFactor);++cnt){
|
|
if((possiblePrime % getDynamicInt64Array(&primes, cnt)) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
}
|
|
//If you didn't find a factor then it must be prime
|
|
if(!foundFactor){
|
|
pushBackDynamicInt64Array(&primes, possiblePrime);
|
|
}
|
|
//If you did find a factor you need to reset the flag
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//The numbers should be in order, but sort them anyway just in case
|
|
quickSortDynamicInt64Array(&primes);
|
|
return primes;
|
|
}
|
|
|
|
//This function returns all primes factors of a number
|
|
struct DynamicInt64Array getFactors(int64_t goalNumber){
|
|
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
|
|
struct DynamicInt64Array primes = getPrimes((int64_t)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
|
|
struct DynamicInt64Array factors;
|
|
initDynamicInt64Array(&factors);
|
|
|
|
//Need to step through each prime and see if it is a factor of the number
|
|
for(int64_t cnt = 0;cnt < primes.size;){
|
|
if((goalNumber % getDynamicInt64Array(&primes, cnt)) == 0){
|
|
pushBackDynamicInt64Array(&factors, getDynamicInt64Array(&primes, cnt));
|
|
goalNumber /= getDynamicInt64Array(&primes, cnt);
|
|
}
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If it didn't find any factors in the primes the number itself must be prime
|
|
if(factors.size == 0){
|
|
pushBackDynamicInt64Array(&factors, goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
|
|
|
|
return factors;
|
|
}
|
|
|
|
//This is a function that gets all the divisors of num and returns a DynamicInt64Array containing the divisors
|
|
struct DynamicInt64Array getDivisors(int64_t num){
|
|
struct DynamicInt64Array divisors; //Holds the number of divisors
|
|
initDynamicInt64Array(&divisors);
|
|
|
|
//Ensure the parameter is a valid number
|
|
if(num <= 0){
|
|
return divisors;
|
|
}
|
|
else if(num == 1){
|
|
pushBackDynamicInt64Array(&divisors, 1);
|
|
return divisors;
|
|
}
|
|
//You only need to check up to sqrt(num)
|
|
int64_t topPossibleDivisor = ceil(sqrt(num));
|
|
for(int64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//Check if the counter evenly divides the number
|
|
//If it does the counter and the other number are both divisors
|
|
if((num % possibleDivisor) == 0){
|
|
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
|
|
pushBackDynamicInt64Array(&divisors, possibleDivisor);
|
|
//We still need to account for sqrt(num) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
pushBackDynamicInt64Array(&divisors, (num / possibleDivisor));
|
|
}
|
|
//Take care of a few occations where a number was added twice
|
|
if(getDynamicInt64Array(&divisors, (divisors.size - 1)) == (possibleDivisor + 1)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
//Sort the vector for neatness
|
|
quickSortDynamicInt64Array(&divisors);
|
|
|
|
//Return the vector of divisors
|
|
return divisors;
|
|
}
|
|
|
|
//This function returns the numth Fibonacci number
|
|
int64_t getFib(const int64_t num){
|
|
//Make sure the number is within bounds
|
|
if(num <= 2){
|
|
return 1;
|
|
}
|
|
//Setup the variables
|
|
int64_t fib = 0;
|
|
int64_t tempNums[3];
|
|
tempNums[0] = tempNums[1] = 1;
|
|
|
|
//Do the calculation
|
|
unsigned int cnt;
|
|
for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
|
|
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
|
}
|
|
fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
|
|
|
|
return fib;
|
|
}
|
|
|
|
//This function returns a DynamicInt64Array that includes all Fibonacci numbers <= num
|
|
struct DynamicInt64Array getAllFib(const int64_t num){
|
|
struct DynamicInt64Array fibList;
|
|
initDynamicInt64Array(&fibList);
|
|
|
|
//Make sure the number is within bounds
|
|
if(num <= 1){
|
|
pushBackDynamicInt64Array(&fibList, 1);
|
|
return fibList;
|
|
}
|
|
else{ //Make sure to add the first 2 elements
|
|
pushBackDynamicInt64Array(&fibList, 1);
|
|
pushBackDynamicInt64Array(&fibList, 1);
|
|
}
|
|
|
|
//Setup the variables
|
|
int64_t fib = 0;
|
|
int64_t tempNums[3];
|
|
tempNums[0] = tempNums[1] = 1;
|
|
|
|
//Do the calculation and add each number to the vector
|
|
for(int64_t cnt = 2;(tempNums[(cnt - 1) % 3] < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
|
|
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
|
pushBackDynamicInt64Array(&fibList, tempNums[cnt % 3]);
|
|
}
|
|
|
|
//If you triggered the exit statement you have one more element than you need
|
|
popBackDynamicInt64Array(&fibList);
|
|
|
|
//Return the vector that contains all of the Fibonacci numbers
|
|
return fibList;
|
|
}
|
|
|
|
#endif //ALGORITHMS_H
|