mirror of
https://bitbucket.org/Mattrixwv/my-classes.git
synced 2025-12-06 18:23:57 -05:00
Split up algorithms to several sub files
This commit is contained in:
65
headers/mee/Dice.hpp
Normal file
65
headers/mee/Dice.hpp
Normal file
@@ -0,0 +1,65 @@
|
||||
//myClasses/Dice.hpp
|
||||
//Matthew Ellison
|
||||
// Created: 1-26-19
|
||||
//Modified: 1-26-19
|
||||
//This is a simple class to simulate a dice for games
|
||||
///This file has to be modified slightly to work with windows because the random_device does not work correctly
|
||||
/*
|
||||
Copyright (C) 2018 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef DICE_HPP
|
||||
#define DICE_HPP
|
||||
|
||||
|
||||
#include <random>
|
||||
#include <cinttypes>
|
||||
//Use this for anything besides Linux. It replaces random_device
|
||||
//I know this doesn't work correctly with mingw on Windows, not sure about msbuild or mac so I don't take the chance
|
||||
#ifndef __linux
|
||||
#include <ctime>
|
||||
#endif //ifndef linux
|
||||
|
||||
|
||||
|
||||
namespace mee{
|
||||
|
||||
template<class T>
|
||||
class Dice{
|
||||
private:
|
||||
T face; //Holds the currently rolled number
|
||||
T sides; //Holds the number of sides the dice has
|
||||
std::default_random_engine generator; //The number generator that all the numbers come from
|
||||
std::uniform_int_distribution<T> dist; //A distribution to make sure the numbers come out relatively evenly
|
||||
public:
|
||||
#ifdef __linux
|
||||
Dice(T sides = 6) : face(1), sides(sides), generator(std::random_device{}()), dist(1, sides) { }
|
||||
#else
|
||||
Dice(T sides = 6) : face(1), sides(sides), generator(time(0)), dist(1, sides) { }
|
||||
#endif //ifdef linux
|
||||
//Setup ways to get information from the class
|
||||
T getFace() const { return face; }
|
||||
T getSides() const { return sides; }
|
||||
//Used to simulate rolling the dice. Returns the new number
|
||||
T roll() {
|
||||
face = dist(generator);
|
||||
return face;
|
||||
}
|
||||
};
|
||||
|
||||
} //namespace mee
|
||||
|
||||
#endif //DICE_HPP
|
||||
96
headers/mee/Generator.hpp
Normal file
96
headers/mee/Generator.hpp
Normal file
@@ -0,0 +1,96 @@
|
||||
//myClasses/Generator.hpp
|
||||
//Matthew Ellison
|
||||
// Created: 07-02-21
|
||||
//Modified: 07-02-21
|
||||
//This file contains a simple generator for coroutines
|
||||
/*
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef MEE_GENERATOR_HPP
|
||||
#define MEE_GENERATOR_HPP
|
||||
|
||||
|
||||
#include <coroutine>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
namespace mee{
|
||||
|
||||
|
||||
template <class T>
|
||||
class Generator{
|
||||
public:
|
||||
struct promise_type{
|
||||
private:
|
||||
T currentValue;
|
||||
public:
|
||||
promise_type() = default;
|
||||
~promise_type() = default;
|
||||
std::suspend_always initial_suspend(){
|
||||
return {};
|
||||
}
|
||||
std::suspend_always final_suspend() noexcept{
|
||||
return {};
|
||||
}
|
||||
Generator<T> get_return_object(){
|
||||
return Generator<T>{std::coroutine_handle<promise_type>::from_promise(*this)};
|
||||
}
|
||||
std::suspend_always yield_value(T value){
|
||||
currentValue = value;
|
||||
return {};
|
||||
}
|
||||
void return_void(){
|
||||
}
|
||||
void unhandled_exception(){
|
||||
//If something goes really wrong rethrow the exception
|
||||
std::rethrow_exception(std::current_exception());
|
||||
}
|
||||
//Don't allow any use of co_await
|
||||
template<class U>
|
||||
std::suspend_never await_transform(U&& value) = delete;
|
||||
|
||||
T current(){
|
||||
return currentValue;
|
||||
}
|
||||
};
|
||||
Generator(std::coroutine_handle<promise_type> handle) : coroutine(handle){
|
||||
}
|
||||
Generator(const Generator&) = delete; //Don't allow any copy connstructors
|
||||
Generator(Generator&& other) : coroutine(other.coroutine){
|
||||
other.coroutine = nullptr;
|
||||
}
|
||||
~Generator(){
|
||||
if(coroutine){
|
||||
coroutine.destroy();
|
||||
}
|
||||
}
|
||||
T next(){
|
||||
coroutine.resume();
|
||||
return coroutine.promise().current();
|
||||
}
|
||||
T current(){
|
||||
return coroutine.promise().current();
|
||||
}
|
||||
Generator& operator=(const Generator&) = delete; //Don't allow any = operations
|
||||
private:
|
||||
std::coroutine_handle<promise_type> coroutine;
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif //MEE_GENERATOR_HPP
|
||||
207
headers/mee/Stopwatch.hpp
Normal file
207
headers/mee/Stopwatch.hpp
Normal file
@@ -0,0 +1,207 @@
|
||||
//MyClasses/Stopwatch.hpp
|
||||
//Matthew Ellison
|
||||
// Created: 10-30-18
|
||||
//Modified: 07-09-20
|
||||
//This file defines a class that can be used as a simple timer for programs
|
||||
/*
|
||||
Copyright (C) 2020 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef STOPWATCH_HPP
|
||||
#define STOPWATCH_HPP
|
||||
|
||||
|
||||
#include <chrono>
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
|
||||
namespace mee{
|
||||
class Stopwatch{
|
||||
public:
|
||||
//Create an error class
|
||||
class stopBeforeStart{}; //Used in stop() to check if you are trying to stop the stopwatch before starting it
|
||||
class timeBeforeStart{}; //Used in getTime() to check if you are trying to get a time before you start it
|
||||
class invalidTimeResolution{}; //Used to detect invalid time resolution in the getStr function
|
||||
private:
|
||||
std::chrono::high_resolution_clock::time_point startTime; //The time the start function was called
|
||||
std::chrono::high_resolution_clock::time_point endTime; //The time the stop function was called
|
||||
bool hasStarted; //A flag to show that start() has been called
|
||||
bool hasStopped; //A flag to show that stop() has been called
|
||||
enum TIME_RESOLUTION {NANOSECOND, MICROSECOND, MILLISECOND, SECOND, MINUTE, HOUR, DEFAULT};
|
||||
//Return the duration in the default time period for the high_resolution_clock
|
||||
double getTime(TIME_RESOLUTION timeResolution){
|
||||
double timePassed = 0; //Holds the amount of time that has passed
|
||||
//If the timer hasn't been stopped then record the time right now. This will simulate looping at the stopwatch while it is still running
|
||||
//I put this at the beginning to get the timestamp at close to the calling of the function as possible
|
||||
if(!hasStopped){
|
||||
endTime = std::chrono::high_resolution_clock::now();
|
||||
}
|
||||
//If the timer hasn't been started throw an exception
|
||||
if(!hasStarted){
|
||||
throw timeBeforeStart();
|
||||
}
|
||||
//Decide what resolution to make the duration
|
||||
if(timeResolution == HOUR){
|
||||
std::chrono::duration<double, std::ratio<3600LL>> dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
else if(timeResolution == MINUTE){
|
||||
std::chrono::duration<double, std::ratio<60LL>> dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
else if(timeResolution == SECOND){
|
||||
std::chrono::duration<double> dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
else if(timeResolution == MILLISECOND){
|
||||
std::chrono::duration<double, std::milli> dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
else if(timeResolution == MICROSECOND){
|
||||
std::chrono::duration<double, std::micro> dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
else if(timeResolution == NANOSECOND){
|
||||
std::chrono::duration<double, std::nano> dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
else if(timeResolution == DEFAULT){
|
||||
std::chrono::high_resolution_clock::duration dur = (endTime - startTime);
|
||||
timePassed = dur.count();
|
||||
}
|
||||
|
||||
return timePassed;
|
||||
}
|
||||
public:
|
||||
Stopwatch(){
|
||||
//Make sure the flags are set to false to show nothing has been called yet
|
||||
hasStarted = hasStopped = false;
|
||||
startTime = endTime = std::chrono::high_resolution_clock::time_point(); //Set the times with a blank time
|
||||
}
|
||||
~Stopwatch(){
|
||||
|
||||
}
|
||||
//Set the start time and flag and make sure the stop flag is unset
|
||||
void start(){
|
||||
hasStarted = true; //Show that the stopwatch has been started
|
||||
hasStopped = false; //Show that the stopwatch is still running. Security in case the Stopwatch is used in multiple places
|
||||
//Put this last to ensure that the time recorded is as close to the return time as possible
|
||||
startTime = std::chrono::high_resolution_clock::now();
|
||||
}
|
||||
//Set the stop time and flag
|
||||
void stop(){
|
||||
//Put this first to ensure the time recorded is as close to the call time as possible
|
||||
std::chrono::high_resolution_clock::time_point tempTime = std::chrono::high_resolution_clock::now();
|
||||
//Make sure the stopwatch has started before you say it has stopped
|
||||
if(hasStarted){
|
||||
endTime = tempTime; //Set the end time appropriately
|
||||
hasStopped = true; //Show that the stop function has been called
|
||||
}
|
||||
//If the stopwatch hadn't been started throw an exception
|
||||
else{
|
||||
throw stopBeforeStart();
|
||||
}
|
||||
}
|
||||
//Return the duration in nanoseconds
|
||||
double getNano(){
|
||||
return getTime(NANOSECOND);
|
||||
}
|
||||
//Return the duration in microseconds
|
||||
double getMicro(){
|
||||
return getTime(MICROSECOND);
|
||||
}
|
||||
//Return the duration in milliseconds
|
||||
double getMilli(){
|
||||
return getTime(MILLISECOND);
|
||||
}
|
||||
//Return the duration in seconds
|
||||
double getSeconds(){
|
||||
return getTime(SECOND);
|
||||
}
|
||||
//Return the duration in minutes
|
||||
double getMinutes(){
|
||||
return getTime(MINUTE);
|
||||
}
|
||||
//Return the duration in hours
|
||||
double getHours(){
|
||||
return getTime(HOUR);
|
||||
}
|
||||
//Return the duration in the default resolution of high_resolution_clock
|
||||
double getTime(){
|
||||
return getTime(DEFAULT);
|
||||
}
|
||||
//Returns a string with the time at best resolution
|
||||
std::string getStr(){
|
||||
//Setup the variables
|
||||
return getStr(getTime(NANOSECOND)); //Holds the time that we are manipulating
|
||||
}
|
||||
//This function resets all the variables so that it can be run again
|
||||
void reset(){
|
||||
hasStarted = hasStopped = false; //Set the flags as though nothing has happened
|
||||
endTime = startTime = std::chrono::high_resolution_clock::time_point(); //Set the times with a blank time
|
||||
}
|
||||
friend std::ostream& operator<<(std::ostream& out, Stopwatch& timer);
|
||||
|
||||
static std::string getStr(double nanoseconds){
|
||||
//Setup the variables
|
||||
double tempTime = nanoseconds; //Holds the time that we are manipulating
|
||||
std::stringstream timeStr;
|
||||
|
||||
//Decide what time resolution would be best. Looking for the format of XXX.XXX
|
||||
int timeRes = NANOSECOND;
|
||||
for(timeRes = NANOSECOND;(timeRes < SECOND) && (tempTime >= 1000);++timeRes){
|
||||
tempTime /= 1000;
|
||||
}
|
||||
|
||||
//Check if the resolution is seconds and if there are more than 120 seconds
|
||||
if((timeRes == SECOND) && (tempTime >= 120)){
|
||||
++timeRes;
|
||||
tempTime /= 60;
|
||||
}
|
||||
//Check if the resolution is minutes and if there are more than 120 minutes
|
||||
if((timeRes == MINUTE) && (tempTime >= 120)){
|
||||
++timeRes;
|
||||
tempTime /= 60;
|
||||
}
|
||||
|
||||
//Put the number in the string
|
||||
timeStr << std::fixed << std::setprecision(3) << tempTime << ' ';
|
||||
|
||||
//From the timeRes variable decide what word should go on the end of the string
|
||||
switch(timeRes){
|
||||
case HOUR: timeStr << "hours"; break;
|
||||
case MINUTE: timeStr << "minutes"; break;
|
||||
case SECOND: timeStr << "seconds"; break;
|
||||
case MILLISECOND: timeStr << "milliseconds"; break;
|
||||
case MICROSECOND: timeStr << "microseconds"; break;
|
||||
case NANOSECOND: timeStr << "nanoseconds"; break;
|
||||
case DEFAULT: timeStr << "time"; break;
|
||||
default: throw invalidTimeResolution(); //This should never be hit with this code, but it's good to have all the bases covered
|
||||
}
|
||||
|
||||
//Return the string
|
||||
return timeStr.str();
|
||||
}
|
||||
}; //end class Stopwatch
|
||||
std::ostream& operator<<(std::ostream& out, Stopwatch& timer){
|
||||
out << timer.getStr();
|
||||
bool num = timer.hasStopped;
|
||||
return out;
|
||||
}
|
||||
} //end namespace mee
|
||||
|
||||
#endif //end STOPWATCH_HPP
|
||||
345
headers/mee/numberAlgorithms.hpp
Normal file
345
headers/mee/numberAlgorithms.hpp
Normal file
@@ -0,0 +1,345 @@
|
||||
//myClasses/headers/mee/numberAlgorithms.hpp
|
||||
//Matthew Ellison
|
||||
// Created: 07-02-21
|
||||
//Modified: 07-02-21
|
||||
//This file contains declarations of functions I have created to manipulate numbers
|
||||
/*
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef MEE_NUMBER_ALGORITHMS_HPP
|
||||
#define MEE_NUMBER_ALGORITHMS_HPP
|
||||
|
||||
|
||||
#include <bitset>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "Generator.hpp"
|
||||
|
||||
|
||||
namespace mee{
|
||||
|
||||
|
||||
//This function determines whether the number passed into it is a prime
|
||||
template <class T>
|
||||
bool isPrime(T possiblePrime){
|
||||
if(possiblePrime <= 3){
|
||||
return possiblePrime > 1;
|
||||
}
|
||||
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
|
||||
return false;
|
||||
}
|
||||
for(T cnt = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
|
||||
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
|
||||
template <class T>
|
||||
std::vector<T> getPrimes(T goalNumber){
|
||||
std::vector<T> primes;
|
||||
bool foundFactor = false;
|
||||
|
||||
//If the number is 1, 0, or a negative number return an empty vector
|
||||
if(goalNumber <= 1){
|
||||
return primes;
|
||||
}
|
||||
else{
|
||||
primes.push_back(2);
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all of the even numbers
|
||||
for(T possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
||||
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
||||
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
||||
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
|
||||
if((possiblePrime % primes.at(cnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
//If you didn't find a factor then it must be prime
|
||||
if(!foundFactor){
|
||||
primes.push_back(possiblePrime);
|
||||
}
|
||||
//If you did find a factor you need to reset the flag
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(primes.begin(), primes.end());
|
||||
return primes;
|
||||
}
|
||||
|
||||
//This function returns a vector with a specific number of primes
|
||||
template <class T>
|
||||
std::vector<T> getNumPrimes(T numberOfPrimes){
|
||||
std::vector<T> primes;
|
||||
primes.reserve(numberOfPrimes); //Saves cycles later
|
||||
bool foundFactor = false;
|
||||
|
||||
//If the number is 1, 0, or a negative number return an empty vector
|
||||
if(numberOfPrimes <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise 2 is the first prime number
|
||||
else{
|
||||
primes.push_back(2);
|
||||
}
|
||||
|
||||
//Loop through every odd number starting at 3 until we find the requisite number of primes
|
||||
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
|
||||
for(T possiblePrime = 3;(primes.size() < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
|
||||
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
||||
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
||||
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
|
||||
if((possiblePrime % primes.at(cnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
//If you didn't find a factor then it must be prime
|
||||
if(!foundFactor){
|
||||
primes.push_back(possiblePrime);
|
||||
}
|
||||
//If you did find a factor you need to reset the flag
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//The numbers should be in order, but sort them anyway just in case
|
||||
std::sort(primes.begin(), primes.end());
|
||||
return primes;
|
||||
}
|
||||
|
||||
//This function returns all prime factors of a number
|
||||
template <class T>
|
||||
std::vector<T> getFactors(T goalNumber){
|
||||
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
|
||||
std::vector<T> primes = getPrimes((T)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
|
||||
std::vector<T> factors;
|
||||
|
||||
//Need to step through each prime and see if it is a factor of the number
|
||||
for(int cnt = 0;cnt < primes.size();){
|
||||
if((goalNumber % primes[cnt]) == 0){
|
||||
factors.push_back(primes[cnt]);
|
||||
goalNumber /= primes[cnt];
|
||||
}
|
||||
else{
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
|
||||
//If it didn't find any factors in the primes the number itself must be prime
|
||||
if(factors.size() == 0){
|
||||
factors.push_back(goalNumber);
|
||||
goalNumber /= goalNumber;
|
||||
}
|
||||
|
||||
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
|
||||
|
||||
return factors;
|
||||
}
|
||||
|
||||
//This is a function that gets all the divisors of num and returns a vector containing the divisors
|
||||
template <class T>
|
||||
std::vector<T> getDivisors(T num){
|
||||
std::vector<T> divisors; //Holds the number of divisors
|
||||
//Ensure the parameter is a valid number
|
||||
if(num <= 0){
|
||||
return divisors;
|
||||
}
|
||||
else if(num == 1){
|
||||
divisors.push_back(1);
|
||||
return divisors;
|
||||
}
|
||||
//You only need to check up to sqrt(num)
|
||||
T topPossibleDivisor = ceil(sqrt(num));
|
||||
for(uint64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
||||
//Check if the counter evenly divides the number
|
||||
//If it does the counter and the other number are both divisors
|
||||
if((num % possibleDivisor) == 0){
|
||||
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
|
||||
divisors.push_back(possibleDivisor);
|
||||
//We still need to account for sqrt(num) being a divisor
|
||||
if(possibleDivisor != topPossibleDivisor){
|
||||
divisors.push_back(num / possibleDivisor);
|
||||
}
|
||||
//Take care of a few occations where a number was added twice
|
||||
if(divisors.at(divisors.size() - 1) == (possibleDivisor + 1)){
|
||||
++possibleDivisor;
|
||||
}
|
||||
}
|
||||
}
|
||||
//Sort the vector for neatness
|
||||
std::sort(divisors.begin(), divisors.end());
|
||||
//Return the vector of divisors
|
||||
return divisors;
|
||||
}
|
||||
|
||||
//These functions return the numth Fibonacci number
|
||||
template <class T>
|
||||
T getFib(const T num){
|
||||
//Make sure the number is within bounds
|
||||
if(num <= 2){
|
||||
return 1;
|
||||
}
|
||||
//Setup the variables
|
||||
T fib = 0;
|
||||
T tempNums[3];
|
||||
tempNums[0] = tempNums[1] = 1;
|
||||
|
||||
//Do the calculation
|
||||
unsigned int cnt;
|
||||
for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
|
||||
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
||||
}
|
||||
fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
|
||||
|
||||
return fib;
|
||||
}
|
||||
|
||||
//This function returns a vector that includes all Fibonacci numbers <= num
|
||||
template <class T>
|
||||
std::vector<T> getAllFib(const T num){
|
||||
std::vector<T> fibList;
|
||||
//Make sure the number is within bounds
|
||||
if(num <= 1){
|
||||
fibList.push_back(1);
|
||||
return fibList;
|
||||
}
|
||||
else{ //Make sure to add the first 2 elements
|
||||
fibList.push_back(1);
|
||||
fibList.push_back(1);
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
T fib = 0;
|
||||
T tempNums[3];
|
||||
tempNums[0] = tempNums[1] = 1;
|
||||
|
||||
//Do the calculation and add each number to the vector
|
||||
for(T cnt = 2;(tempNums[(cnt - 1) % 3] <= num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
|
||||
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
||||
fibList.push_back(tempNums[cnt % 3]);
|
||||
}
|
||||
|
||||
//If you triggered the exit statement you have one more element than you need
|
||||
fibList.pop_back();
|
||||
|
||||
//Return the vector that contains all of the Fibonacci numbers
|
||||
return fibList;
|
||||
}
|
||||
|
||||
//This function converts a number to its binary equivalent
|
||||
template <class T>
|
||||
std::string toBin(T num){
|
||||
//Convert the number to a binary string
|
||||
std::string fullString = std::bitset<sizeof(T) * 8>(num).to_string();
|
||||
//Remove leading zeros
|
||||
int loc = 0;
|
||||
for(loc = 0;(loc < fullString.size()) && (fullString[loc] == '0');++loc);
|
||||
std::string trimmedString = fullString.substr(loc);
|
||||
if(trimmedString == ""){
|
||||
trimmedString = "0";
|
||||
}
|
||||
return trimmedString;
|
||||
}
|
||||
|
||||
//Return the factorial of the number passed in
|
||||
template <class T>
|
||||
T factorial(T num){
|
||||
T fact = 1;
|
||||
for(T cnt = 1;cnt <= num;++cnt){
|
||||
fact *= cnt;
|
||||
}
|
||||
return fact;
|
||||
}
|
||||
|
||||
//A generator for prime numbers
|
||||
template <class T>
|
||||
mee::Generator<T> sieveOfEratosthenes(){
|
||||
//Return 2 the first time, this lets us skip all even numbers later
|
||||
co_yield 2;
|
||||
|
||||
int num = 0;
|
||||
|
||||
//Dictionary to hold the primes we have already found
|
||||
std::unordered_map<T, std::vector<T>> dict;
|
||||
|
||||
//Start checking for primes with the number 3 and skip all even numbers
|
||||
for(T possiblePrime = 3;true;possiblePrime += 2){
|
||||
//If possiblePrime is in the dictionary it is a composite number
|
||||
if(dict.contains(possiblePrime)){
|
||||
//Move each number to its next odd multiple
|
||||
for(T num : dict[possiblePrime]){
|
||||
dict[possiblePrime + num + num].push_back(num);
|
||||
}
|
||||
//We no longer need this, free the memory
|
||||
dict.erase(possiblePrime);
|
||||
}
|
||||
//If possiblePrime is not in the dictionary it is a new prime number
|
||||
//Return it and mark its next multiple
|
||||
else{
|
||||
co_yield possiblePrime;
|
||||
dict[possiblePrime * possiblePrime].push_back(possiblePrime);
|
||||
}
|
||||
}
|
||||
}
|
||||
//An alternate to sieveOfEratosthenes that uses map instead of unordered_map for greater compatibility but lower performance
|
||||
template <class T>
|
||||
mee::Generator<T> sieveOfEratosthenesAlt(){
|
||||
//Return 2 the first time, this lets us skip all even numbers later
|
||||
co_yield 2;
|
||||
|
||||
int num = 0;
|
||||
|
||||
//Dictionary to hold the primes we have already found
|
||||
std::map<T, std::vector<T>> dict;
|
||||
|
||||
//Start checking for primes with the number 3 and skip all even numbers
|
||||
for(T possiblePrime = 3;true;possiblePrime += 2){
|
||||
//If possiblePrime is in the dictionary it is a composite number
|
||||
if(dict.contains(possiblePrime)){
|
||||
//Move each number to its next odd multiple
|
||||
for(T num : dict[possiblePrime]){
|
||||
dict[possiblePrime + num + num].push_back(num);
|
||||
}
|
||||
//We no longer need this, free the memory
|
||||
dict.erase(possiblePrime);
|
||||
}
|
||||
//If possiblePrime is not in the dictionary it is a new prime number
|
||||
//Return it and mark its next multiple
|
||||
else{
|
||||
co_yield possiblePrime;
|
||||
dict[possiblePrime * possiblePrime].push_back(possiblePrime);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif //MEE_NUMBER_ALGORITHMS_HPP
|
||||
117
headers/mee/stringAlgorithms.hpp
Normal file
117
headers/mee/stringAlgorithms.hpp
Normal file
@@ -0,0 +1,117 @@
|
||||
//myClasses/headers/mee/stringAlgorithms.hpp
|
||||
//Matthew Ellison
|
||||
// Created: 07-02-21
|
||||
//Modified: 07-02-21
|
||||
//This file contains declarations of functions I have created to manipulate strings
|
||||
/*
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef MEE_STRING_ALGORITHMS_HPP
|
||||
#define MEE_STRING_ALGORITHMS_HPP
|
||||
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
||||
namespace mee{
|
||||
|
||||
|
||||
//This is a function that creates all permutations of a string and returns a vector of those permutations.
|
||||
std::vector<std::string> getPermutations(std::string master, int num = 0){
|
||||
std::vector<std::string> perms;
|
||||
//Check if the number is out of bounds
|
||||
if((num >= master.size()) || (num < 0)){
|
||||
return perms;
|
||||
}
|
||||
//If this is the last possible recurse just return the current string
|
||||
else if(num == (master.size() - 1)){
|
||||
perms.push_back(master);
|
||||
return perms;
|
||||
}
|
||||
//If there are more possible recurses, recurse with the current permutation
|
||||
std::vector<std::string> temp;
|
||||
temp = getPermutations(master, num + 1);
|
||||
perms.insert(perms.end(), temp.begin(), temp.end());
|
||||
//You need to swap the current letter with every possible letter after it
|
||||
//The ones needed to swap before will happen automatically when the function recurses
|
||||
for(int cnt = 1;(num + cnt) < master.size();++cnt){
|
||||
std::swap(master[num], master[num + cnt]);
|
||||
temp = getPermutations(master, num + 1);
|
||||
perms.insert(perms.end(), temp.begin(), temp.end());
|
||||
std::swap(master[num], master[num + cnt]);
|
||||
}
|
||||
|
||||
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
|
||||
if(num == 0){
|
||||
std::sort(perms.begin(), perms.end());
|
||||
}
|
||||
return perms;
|
||||
}
|
||||
|
||||
//This function returns the number of times the character occurs in the string
|
||||
int findNumOccurrence(std::string str, char ch){
|
||||
int num = 0; //Set the number of occurrences to 0 to start
|
||||
//Loop through every character in the string and compare it to the character passed in
|
||||
for(char strCh : str){
|
||||
//If the character is the same as the one passed in increment the counter
|
||||
if(strCh == ch){
|
||||
++num;
|
||||
}
|
||||
}
|
||||
//Return the number of times the character appeared in the string
|
||||
return num;
|
||||
}
|
||||
|
||||
//Return a vector of strings split on the delimiter
|
||||
std::vector<std::string> split(std::string str, char delimiter){
|
||||
std::vector<std::string> splitStrings;
|
||||
int location = 0;
|
||||
location = str.find(delimiter);
|
||||
while(location != std::string::npos){
|
||||
//Split the string
|
||||
std::string firstString = str.substr(0, location);
|
||||
str = str.substr(location + 1); //+1 to skip the delimiter itself
|
||||
//Add the string to the vector
|
||||
splitStrings.push_back(firstString);
|
||||
//Get the location of the next delimiter
|
||||
location = str.find(delimiter);
|
||||
}
|
||||
//Get the final string if it isn't empty
|
||||
if(!str.empty()){
|
||||
splitStrings.push_back(str);
|
||||
}
|
||||
//Return the vector of strings
|
||||
return splitStrings;
|
||||
}
|
||||
|
||||
//This function returns true if the string passed in is a palindrome
|
||||
bool isPalindrome(std::string str){
|
||||
std::string rev = str;
|
||||
std::reverse(rev.begin(), rev.end());
|
||||
if(str == rev){
|
||||
return true;
|
||||
}
|
||||
else{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif //MEE_STRING_ALGORITHMS_HPP
|
||||
213
headers/mee/vectorAlgorithms.hpp
Normal file
213
headers/mee/vectorAlgorithms.hpp
Normal file
@@ -0,0 +1,213 @@
|
||||
//myClasses/headers/mee/vectorAlgorithms.hpp
|
||||
//Matthew Ellison
|
||||
// Created: 07-02-21
|
||||
//Modified: 07-02-21
|
||||
//This file contains declarations of functions I have created to manipulate vectors and the data inside them
|
||||
/*
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef MEE_VECTOR_ALGORITHMS_HPP
|
||||
#define MEE_VECTOR_ALGORITHMS_HPP
|
||||
|
||||
|
||||
#include <cinttypes>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
|
||||
namespace mee{
|
||||
|
||||
|
||||
//This is a function that returns the sum of all elements in a vector
|
||||
template <class T>
|
||||
T getSum(const std::vector<T>& ary){
|
||||
T sum = 0;
|
||||
for(unsigned int cnt = 0;cnt < ary.size();++cnt){
|
||||
sum += ary.at(cnt);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
//This is a function that returns the product of all elmements in a vector
|
||||
template <class T>
|
||||
T getProduct(const std::vector<T>& ary){
|
||||
//Make sure there is something in the array
|
||||
if(ary.size() == 0){
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Multiply all elements in the array together
|
||||
T prod = 1;
|
||||
for(T cnt = 0;cnt < ary.size();++cnt){
|
||||
prod *= ary.at(cnt);
|
||||
}
|
||||
return prod;
|
||||
}
|
||||
|
||||
//This is a function that searches a vecter for an element. Returns true if they key is found in list
|
||||
template <class T>
|
||||
bool isFound(std::vector<T> ary, T key){
|
||||
typename std::vector<T>::iterator location = std::find(ary.begin(), ary.end(), key);
|
||||
if(location == ary.end()){
|
||||
return false;
|
||||
}
|
||||
else{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
//This is a function that performs a bubble sort on a vector
|
||||
template <class T>
|
||||
void bubbleSort(std::vector<T>& ary){
|
||||
bool notFinished = true; //A flag to determine if the loop is finished
|
||||
for(int numLoops = 0;numLoops < ary.size();++numLoops){ //Loop until you finish
|
||||
notFinished = false; //Assume you are finished until you find an element out of order
|
||||
//Loop through every element in the vector, moving the largest one to the end
|
||||
for(int cnt = 1;cnt < (ary.size() - numLoops);++cnt){ //use size - 1 to make sure you don't go out of bounds
|
||||
if(ary.at(cnt) < ary.at(cnt - 1)){
|
||||
std::swap(ary.at(cnt), ary.at(cnt - 1));
|
||||
notFinished = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//This is a helper function for quickSort. It chooses a pivot element and sorts everything to larger or smaller than the pivot. Returns location of pivot
|
||||
template <class T>
|
||||
int64_t partition(std::vector<T>& ary, int64_t bottom, int64_t top){
|
||||
int64_t pivot = ary.at(top); //Pick a pivot element
|
||||
int64_t smaller = bottom - 1; //Keep track of where all elements are smaller than the pivot
|
||||
|
||||
//Loop through every element in the vector testing if it is smaller than pivot
|
||||
for(int64_t cnt = bottom;cnt < top;++cnt){
|
||||
//If the element is smaller than pivot move it to the correct location
|
||||
if(ary.at(cnt) < pivot){
|
||||
//Increment the tracker for elements smaller than pivot
|
||||
++smaller;
|
||||
//Swap the current element to the correct location for being smaller than the pivot
|
||||
std::swap(ary.at(smaller), ary.at(cnt));
|
||||
}
|
||||
}
|
||||
|
||||
//Move the pivot element to the correct location
|
||||
++smaller;
|
||||
std::swap(ary.at(top), ary.at(smaller));
|
||||
|
||||
//Return the pivot element
|
||||
return smaller;
|
||||
}
|
||||
//This is the function that actually performs the quick sort on the vector
|
||||
template <class T>
|
||||
void quickSort(std::vector<T>& ary, int64_t bottom, int64_t top){
|
||||
//Make sure you have a valid slice of the vector
|
||||
if(bottom < top){
|
||||
//Get the pivot location
|
||||
int64_t pivot = partition(ary, bottom, top);
|
||||
|
||||
//Sort all element less than the pivot
|
||||
quickSort(ary, bottom, pivot - 1);
|
||||
//Sort all element greater than the pivot
|
||||
quickSort(ary, pivot + 1, top);
|
||||
}
|
||||
}
|
||||
//This is a function that makes quick sort easier to start
|
||||
template <class T>
|
||||
void quickSort(std::vector<T>& ary){
|
||||
//Call the other quickSort function with all the necessary info
|
||||
quickSort(ary, 0, ary.size() - 1);
|
||||
}
|
||||
|
||||
//This is a function that performs a search on a vector and returns the subscript of the item being searched for
|
||||
template <class T>
|
||||
int64_t search(const std::vector<T>& ary, T num){
|
||||
int64_t subscript = 0; //Start with the subscript at 0
|
||||
//Step through every element in the vector and return the subscript if you find the correct element
|
||||
while(subscript < ary.size()){
|
||||
if(ary.at(subscript) == num){
|
||||
return subscript;
|
||||
}
|
||||
else{
|
||||
++subscript;
|
||||
}
|
||||
}
|
||||
//If you cannot find the element return -1
|
||||
return -1;
|
||||
}
|
||||
|
||||
//This function finds the smallest element in a vector
|
||||
template <class T>
|
||||
T findMin(const std::vector<T>& ary){
|
||||
T min; //For the smallest element
|
||||
|
||||
//Make sure the vector is not empty
|
||||
if(ary.size() > 0){
|
||||
//Use the first element as the smallest element
|
||||
min = ary.at(0);
|
||||
//Run through every element in the vector, checking it against the current minimum
|
||||
for(int cnt = 1;cnt < ary.size();++cnt){
|
||||
//If the current element is smaller than the minimum, make it the new minimum
|
||||
if(ary.at(cnt) < min){
|
||||
min = ary.at(cnt);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Return the element
|
||||
return min;
|
||||
}
|
||||
|
||||
//This function finds the largest element in a vector
|
||||
template <class T>
|
||||
T findMax(const std::vector<T>& ary){
|
||||
T max; //For the largest element
|
||||
|
||||
//Make sure the vector is not empty
|
||||
if(ary.size() > 0){
|
||||
//Use the first element as the largest element
|
||||
max = ary.at(0);
|
||||
//Run through every element in the vector, checking it against the current minimum
|
||||
for(int cnt = 1;cnt < ary.size();++cnt){
|
||||
//If the current element is larger than the maximum, make it the new maximum
|
||||
if(ary.at(cnt) > max){
|
||||
max = ary.at(cnt);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Return the element
|
||||
return max;
|
||||
}
|
||||
|
||||
//Print a vector
|
||||
template <class T>
|
||||
std::string printVector(std::vector<T>& ary){
|
||||
std::stringstream str;
|
||||
str << "[";
|
||||
for(int cnt = 0;cnt < ary.size();++cnt){
|
||||
str << ary[cnt];
|
||||
if(cnt < ary.size() - 1){
|
||||
str << ", ";
|
||||
}
|
||||
}
|
||||
str << "]";
|
||||
return str.str();
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif //MEE_VECTOR_ALGORITHMS_HPP
|
||||
Reference in New Issue
Block a user