//myClasses/headers/mee/vectorAlgorithms.hpp
//Matthew Ellison
// Created: 07-02-21
//Modified: 07-02-21
//This file contains declarations of functions I have created to manipulate vectors and the data inside them
/*
Copyright (C) 2021 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#ifndef MEE_VECTOR_ALGORITHMS_HPP
#define MEE_VECTOR_ALGORITHMS_HPP
#include
#include
#include
namespace mee{
//This is a function that returns the sum of all elements in a vector
template
T getSum(const std::vector& ary){
T sum = 0;
for(unsigned int cnt = 0;cnt < ary.size();++cnt){
sum += ary.at(cnt);
}
return sum;
}
//This is a function that returns the product of all elmements in a vector
template
T getProduct(const std::vector& ary){
//Make sure there is something in the array
if(ary.size() == 0){
return 0;
}
//Multiply all elements in the array together
T prod = 1;
for(T cnt = 0;cnt < ary.size();++cnt){
prod *= ary.at(cnt);
}
return prod;
}
//This is a function that searches a vecter for an element. Returns true if they key is found in list
template
bool isFound(std::vector ary, T key){
typename std::vector::iterator location = std::find(ary.begin(), ary.end(), key);
if(location == ary.end()){
return false;
}
else{
return true;
}
}
//This is a function that performs a bubble sort on a vector
template
void bubbleSort(std::vector& ary){
bool notFinished = true; //A flag to determine if the loop is finished
for(int numLoops = 0;numLoops < ary.size();++numLoops){ //Loop until you finish
notFinished = false; //Assume you are finished until you find an element out of order
//Loop through every element in the vector, moving the largest one to the end
for(int cnt = 1;cnt < (ary.size() - numLoops);++cnt){ //use size - 1 to make sure you don't go out of bounds
if(ary.at(cnt) < ary.at(cnt - 1)){
std::swap(ary.at(cnt), ary.at(cnt - 1));
notFinished = true;
}
}
}
}
//This is a helper function for quickSort. It chooses a pivot element and sorts everything to larger or smaller than the pivot. Returns location of pivot
template
int64_t partition(std::vector& ary, int64_t bottom, int64_t top){
int64_t pivot = ary.at(top); //Pick a pivot element
int64_t smaller = bottom - 1; //Keep track of where all elements are smaller than the pivot
//Loop through every element in the vector testing if it is smaller than pivot
for(int64_t cnt = bottom;cnt < top;++cnt){
//If the element is smaller than pivot move it to the correct location
if(ary.at(cnt) < pivot){
//Increment the tracker for elements smaller than pivot
++smaller;
//Swap the current element to the correct location for being smaller than the pivot
std::swap(ary.at(smaller), ary.at(cnt));
}
}
//Move the pivot element to the correct location
++smaller;
std::swap(ary.at(top), ary.at(smaller));
//Return the pivot element
return smaller;
}
//This is the function that actually performs the quick sort on the vector
template
void quickSort(std::vector& ary, int64_t bottom, int64_t top){
//Make sure you have a valid slice of the vector
if(bottom < top){
//Get the pivot location
int64_t pivot = partition(ary, bottom, top);
//Sort all element less than the pivot
quickSort(ary, bottom, pivot - 1);
//Sort all element greater than the pivot
quickSort(ary, pivot + 1, top);
}
}
//This is a function that makes quick sort easier to start
template
void quickSort(std::vector& ary){
//Call the other quickSort function with all the necessary info
quickSort(ary, 0, ary.size() - 1);
}
//This is a function that performs a search on a vector and returns the subscript of the item being searched for
template
int64_t search(const std::vector& ary, T num){
int64_t subscript = 0; //Start with the subscript at 0
//Step through every element in the vector and return the subscript if you find the correct element
while(subscript < ary.size()){
if(ary.at(subscript) == num){
return subscript;
}
else{
++subscript;
}
}
//If you cannot find the element return -1
return -1;
}
//This function finds the smallest element in a vector
template
T findMin(const std::vector& ary){
T min; //For the smallest element
//Make sure the vector is not empty
if(ary.size() > 0){
//Use the first element as the smallest element
min = ary.at(0);
//Run through every element in the vector, checking it against the current minimum
for(int cnt = 1;cnt < ary.size();++cnt){
//If the current element is smaller than the minimum, make it the new minimum
if(ary.at(cnt) < min){
min = ary.at(cnt);
}
}
}
//Return the element
return min;
}
//This function finds the largest element in a vector
template
T findMax(const std::vector& ary){
T max; //For the largest element
//Make sure the vector is not empty
if(ary.size() > 0){
//Use the first element as the largest element
max = ary.at(0);
//Run through every element in the vector, checking it against the current minimum
for(int cnt = 1;cnt < ary.size();++cnt){
//If the current element is larger than the maximum, make it the new maximum
if(ary.at(cnt) > max){
max = ary.at(cnt);
}
}
}
//Return the element
return max;
}
//Print a vector
template
std::string printVector(std::vector& ary){
std::stringstream str;
str << "[";
for(int cnt = 0;cnt < ary.size();++cnt){
str << ary[cnt];
if(cnt < ary.size() - 1){
str << ", ";
}
}
str << "]";
return str.str();
}
}
#endif //MEE_VECTOR_ALGORITHMS_HPP