//myClasses/Algorithms.hpp
//Matthew Ellison
// Created: 11-08-18
//Modified: 02-28-19
//This file contains the declarations and implementations to several algoritms that I have found useful
/*
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#ifndef MEE_ALGORITHMS_HPP
#define MEE_ALGORITHMS_HPP
#include
#include
#include
#include
#include
namespace mee{
//A list of functions in the file
//Also works as prototypes with general information
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
template
std::vector getPrimes(T goalNumber);
//This function returns a vector with a specific number of primes
template
std::vector getNumPrimes(T numberOfPrimes);
//This function returns all prime factors of a number
template
std::vector getFactors(T goalNumber);
//This is a function that gets all the divisors of num and returns a vector containing the divisors
template
std::vector getDivisors(T num);
//This is a function that returns the sum of all elements in a vector
template
T getSum(const std::vector& numbers);
//This is a function that returns the product of all elements in a vector
template
T getProduct(const std::vector& nums);
//This is a function that searches a vecter for an element. Returns true if the key is found in list
template
bool isFound(std::vector ary, T key);
//This is a function that creates all permutations of a string and returns a vector of those permutations.
//It is meant to have only the string passed into it from the calling function. num is used for recursion purposes
//It can however be used with num if you want the first num characters to be stationary
std::vector getPermutations(std::string master, int num = 0);
//These functions return the numth Fibonacci number
template
T getFib(const T num);
//This function returns a vector that includes all Fibonacci numbers <= num
template
std::vector getAllFib(const T num);
//This is a function that performs a bubble sort on a vector
template
void bubbleSort(std::vector& ary);
//This is a function that makes quick sort easier to start
template
void quickSort(std::vector& ary);
//This is the function that actually performs the quick sort on the vector
template
void quickSort(std::vector& ary, int64_t bottom, int64_t top);
//This is a helper function for quickSort. It chooses a pivot element and sorts everything to larger or smaller than the pivot. Returns location of pivot
template
int64_t partition(std::vector& ary, int64_t bottom, int64_t top);
//This is a function that performs a search on a vector and returns the subscript of the item being searched for (-1 if not found)
template
int64_t search(const std::vector& ary, T num);
//This function finds the smallest element in a vector
template
T findMin(const std::vector& ary);
//This function finds the largest element in a vector
template
T findMax(const std::vector& ary);
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
template
std::vector getPrimes(T goalNumber){
std::vector primes;
bool foundFactor = false;
//If the number is 1, 0, or a negative number return an empty vector
if(goalNumber <= 1){
return primes;
}
else{
primes.push_back(2);
}
//We can now start at 3 and skip all of the even numbers
for(T possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
if((possiblePrime % primes.at(cnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
primes.push_back(possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
std::sort(primes.begin(), primes.end());
return primes;
}
//This function returns a vector with a specific number of primes
template
std::vector getNumPrimes(T numberOfPrimes){
std::vector primes;
primes.reserve(numberOfPrimes); //Saves cycles later
bool foundFactor = false;
//If the number is 1, 0, or a negative number return an empty vector
if(numberOfPrimes <= 1){
return primes;
}
//Otherwise 2 is the first prime number
else{
primes.push_back(2);
}
//Loop through every odd number starting at 3 until we find the requisite number of primes
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
for(T possiblePrime = 3;(primes.size() < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
if((possiblePrime % primes.at(cnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
primes.push_back(possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
//The numbers should be in order, but sort them anyway just in case
std::sort(primes.begin(), primes.end());
return primes;
}
//This function returns all prime factors of a number
template
std::vector getFactors(T goalNumber){
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
std::vector primes = getPrimes((T)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
std::vector factors;
//Need to step through each prime and see if it is a factor of the number
for(int cnt = 0;cnt < primes.size();){
if((goalNumber % primes[cnt]) == 0){
factors.push_back(primes[cnt]);
goalNumber /= primes[cnt];
}
else{
++cnt;
}
}
//If it didn't find any factors in the primes the number itself must be prime
if(factors.size() == 0){
factors.push_back(goalNumber);
goalNumber /= goalNumber;
}
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
return factors;
}
//This is a function that gets all the divisors of num and returns a vector containing the divisors
template
std::vector getDivisors(T num){
std::vector divisors; //Holds the number of divisors
//Ensure the parameter is a valid number
if(num <= 0){
return divisors;
}
else if(num == 1){
divisors.push_back(1);
return divisors;
}
//You only need to check up to sqrt(num)
T topPossibleDivisor = ceil(sqrt(num));
for(uint64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
//Check if the counter evenly divides the number
//If it does the counter and the other number are both divisors
if((num % possibleDivisor) == 0){
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
divisors.push_back(possibleDivisor);
//We still need to account for sqrt(num) being a divisor
if(possibleDivisor != topPossibleDivisor){
divisors.push_back(num / possibleDivisor);
}
//Take care of a few occations where a number was added twice
if(divisors.at(divisors.size() - 1) == (possibleDivisor + 1)){
++possibleDivisor;
}
}
}
//Sort the vector for neatness
std::sort(divisors.begin(), divisors.end());
//Return the vector of divisors
return divisors;
}
//This is a function that returns the sum of all elements in a vector
template
T getSum(const std::vector& ary){
T sum = 0;
for(unsigned int cnt = 0;cnt < ary.size();++cnt){
sum += ary.at(cnt);
}
return sum;
}
//This is a function that returns the product of all elmements in a vector
template
T getProduct(const std::vector& ary){
//Make sure there is something in the array
if(ary.size() == 0){
return 0;
}
//Multiply all elements in the array together
T prod = 1;
for(T cnt = 0;cnt < ary.size();++cnt){
prod *= ary.at(cnt);
}
return prod;
}
//This is a function that searches a vecter for an element. Returns true if they key is found in list
template
bool isFound(std::vector ary, T key){
for(int cnt = 0;cnt < ary.size();++cnt){
if(ary.at(cnt) == key){
return true;
}
}
return false;
}
//This is a function that creates all permutations of a string and returns a vector of those permutations.
std::vector getPermutations(std::string master, int num){
std::vector perms;
//Check if the number is out of bounds
if((num >= master.size()) || (num < 0)){
return perms;
}
//If this is the last possible recurse just return the current string
else if(num == (master.size() - 1)){
perms.push_back(master);
return perms;
}
//If there are more possible recurses, recurse with the current permutation
std::vector temp;
temp = getPermutations(master, num + 1);
perms.insert(perms.end(), temp.begin(), temp.end());
//You need to swap the current letter with every possible letter after it
//The ones needed to swap before will happen automatically when the function recurses
for(int cnt = 1;(num + cnt) < master.size();++cnt){
std::swap(master[num], master[num + cnt]);
temp = getPermutations(master, num + 1);
perms.insert(perms.end(), temp.begin(), temp.end());
std::swap(master[num], master[num + cnt]);
}
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
if(num == 0){
std::sort(perms.begin(), perms.end());
}
return perms;
}
//These functions return the numth Fibonacci number
template
T getFib(const T num){
//Make sure the number is within bounds
if(num <= 2){
return 1;
}
//Setup the variables
T fib = 0;
T tempNums[3];
tempNums[0] = tempNums[1] = 1;
//Do the calculation
unsigned int cnt;
for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
}
fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
return fib;
}
//This function returns a vector that includes all Fibonacci numbers <= num
template
std::vector getAllFib(const T num){
std::vector fibList;
//Make sure the number is within bounds
if(num <= 1){
fibList.push_back(1);
return fibList;
}
else{ //Make sure to add the first 2 elements
fibList.push_back(1);
fibList.push_back(1);
}
//Setup the variables
T fib = 0;
T tempNums[3];
tempNums[0] = tempNums[1] = 1;
//Do the calculation and add each number to the vector
for(T cnt = 2;(tempNums[(cnt - 1) % 3] < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
fibList.push_back(tempNums[cnt % 3]);
}
//If you triggered the exit statement you have one more element than you need
fibList.pop_back();
//Return the vector that contains all of the Fibonacci numbers
return fibList;
}
//This is a function that performs a bubble sort on a vector
template
void bubbleSort(std::vector& ary){
bool notFinished = true; //A flag to determine if the loop is finished
for(int numLoops = 0;numLoops < ary.size();++numLoops){ //Loop until you finish
notFinished = false; //Assume you are finished until you find an element out of order
//Loop through every element in the vector, moving the largest one to the end
for(int cnt = 1;cnt < (ary.size() - numLoops);++cnt){ //use size - 1 to make sure you don't go out of bounds
if(ary.at(cnt) < ary.at(cnt - 1)){
std::swap(ary.at(cnt), ary.at(cnt - 1));
notFinished = true;
}
}
}
}
//This is a function that makes quick sort easier to start
template
void quickSort(std::vector& ary){
//Call the other quickSort function with all the necessary info
quickSort(ary, 0, ary.size() - 1);
}
//This is the function that actually performs the quick sort on the vector
template
void quickSort(std::vector& ary, int64_t bottom, int64_t top){
//Make sure you have a valid slice of the vector
if(bottom < top){
//Get the pivot location
int64_t pivot = partition(ary, bottom, top);
//Sort all element less than the pivot
quickSort(ary, bottom, pivot - 1);
//Sort all element greater than the pivot
quickSort(ary, pivot + 1, top);
}
}
//This is a helper function for quickSort. It chooses a pivot element and sorts everything to larger or smaller than the pivot. Returns location of pivot
template
int64_t partition(std::vector& ary, int64_t bottom, int64_t top){
int64_t pivot = ary.at(top); //Pick a pivot element
int64_t smaller = bottom - 1; //Keep track of where all elements are smaller than the pivot
//Loop through every element in the vector testing if it is smaller than pivot
for(int64_t cnt = bottom;cnt < top;++cnt){
//If the element is smaller than pivot move it to the correct location
if(ary.at(cnt) < pivot){
//Increment the tracker for elements smaller than pivot
++smaller;
//Swap the current element to the correct location for being smaller than the pivot
std::swap(ary.at(smaller), ary.at(cnt));
}
}
//Move the pivot element to the correct location
++smaller;
std::swap(ary.at(top), ary.at(smaller));
//Return the pivot element
return smaller;
}
//This is a function that performs a search on a vector and returns the subscript of the item being searched for
template
int64_t search(const std::vector& ary, T num){
int64_t subscript = 0; //Start with the subscript at 0
//Step through every element in the vector and return the subscript if you find the correct element
while(subscript < ary.size()){
if(ary.at(subscript) == num){
return subscript;
}
else{
++subscript;
}
}
//If you cannot find the element return -1
return -1;
}
//This function finds the smallest element in a vector
template
T findMin(const std::vector& ary){
T min; //For the smallest element
//Make sure the vector is not empty
if(ary.size() > 0){
//Use the first element as the smallest element
min = ary.at(0);
//Run through every element in the vector, checking it against the current minimum
for(int cnt = 1;cnt < ary.size();++cnt){
//If the current element is smaller than the minimum, make it the new minimum
if(ary.at(cnt) < min){
min = ary.at(cnt);
}
}
}
//Return the element
return min;
}
//This function finds the largest element in a vector
template
T findMax(const std::vector& ary){
T max; //For the largest element
//Make sure the vector is not empty
if(ary.size() > 0){
//Use the first element as the largest element
max = ary.at(0);
//Run through every element in the vector, checking it against the current minimum
for(int cnt = 1;cnt < ary.size();++cnt){
//If the current element is larger than the maximum, make it the new maximum
if(ary.at(cnt) > max){
max = ary.at(cnt);
}
}
}
//Return the element
return max;
}
}
#endif //MEE_ALGORITHMS_HPP