mirror of
https://bitbucket.org/Mattrixwv/my-classes.git
synced 2025-12-07 02:33:57 -05:00
347 lines
10 KiB
C++
347 lines
10 KiB
C++
//myClasses/headers/mee/numberAlgorithms.hpp
|
|
//Matthew Ellison
|
|
// Created: 07-02-21
|
|
//Modified: 07-02-21
|
|
//This file contains declarations of functions I have created to manipulate numbers
|
|
/*
|
|
Copyright (C) 2021 Matthew Ellison
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef MEE_NUMBER_ALGORITHMS_HPP
|
|
#define MEE_NUMBER_ALGORITHMS_HPP
|
|
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <map>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "Generator.hpp"
|
|
|
|
|
|
namespace mee{
|
|
|
|
|
|
//This function determines whether the number passed into it is a prime
|
|
template <class T>
|
|
bool isPrime(T possiblePrime){
|
|
if(possiblePrime <= 3){
|
|
return possiblePrime > 1;
|
|
}
|
|
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
|
|
return false;
|
|
}
|
|
for(T cnt = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
|
|
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
|
|
template <class T>
|
|
std::vector<T> getPrimes(T goalNumber){
|
|
std::vector<T> primes;
|
|
bool foundFactor = false;
|
|
|
|
//If the number is 1, 0, or a negative number return an empty vector
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
else{
|
|
primes.push_back(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all of the even numbers
|
|
for(T possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
|
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
|
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
|
|
if((possiblePrime % primes.at(cnt)) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
}
|
|
//If you didn't find a factor then it must be prime
|
|
if(!foundFactor){
|
|
primes.push_back(possiblePrime);
|
|
}
|
|
//If you did find a factor you need to reset the flag
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
std::sort(primes.begin(), primes.end());
|
|
return primes;
|
|
}
|
|
|
|
//This function returns a vector with a specific number of primes
|
|
template <class T>
|
|
std::vector<T> getNumPrimes(T numberOfPrimes){
|
|
std::vector<T> primes;
|
|
primes.reserve(numberOfPrimes); //Saves cycles later
|
|
bool foundFactor = false;
|
|
|
|
//If the number is 1, 0, or a negative number return an empty vector
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise 2 is the first prime number
|
|
else{
|
|
primes.push_back(2);
|
|
}
|
|
|
|
//Loop through every odd number starting at 3 until we find the requisite number of primes
|
|
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
|
|
for(T possiblePrime = 3;(primes.size() < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
|
|
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
|
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
|
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
|
|
if((possiblePrime % primes.at(cnt)) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
}
|
|
//If you didn't find a factor then it must be prime
|
|
if(!foundFactor){
|
|
primes.push_back(possiblePrime);
|
|
}
|
|
//If you did find a factor you need to reset the flag
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//The numbers should be in order, but sort them anyway just in case
|
|
std::sort(primes.begin(), primes.end());
|
|
return primes;
|
|
}
|
|
|
|
//This function returns all prime factors of a number
|
|
template <class T>
|
|
std::vector<T> getFactors(T goalNumber){
|
|
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
|
|
std::vector<T> primes = getPrimes((T)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
|
|
std::vector<T> factors;
|
|
|
|
//Need to step through each prime and see if it is a factor of the number
|
|
for(int cnt = 0;cnt < primes.size();){
|
|
if((goalNumber % primes[cnt]) == 0){
|
|
factors.push_back(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If it didn't find any factors in the primes the number itself must be prime
|
|
if(factors.size() == 0){
|
|
factors.push_back(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
|
|
|
|
return factors;
|
|
}
|
|
|
|
//This is a function that gets all the divisors of num and returns a vector containing the divisors
|
|
template <class T>
|
|
std::vector<T> getDivisors(T num){
|
|
std::vector<T> divisors; //Holds the number of divisors
|
|
//Ensure the parameter is a valid number
|
|
if(num <= 0){
|
|
return divisors;
|
|
}
|
|
else if(num == 1){
|
|
divisors.push_back(1);
|
|
return divisors;
|
|
}
|
|
//You only need to check up to sqrt(num)
|
|
T topPossibleDivisor = ceil(sqrt(num));
|
|
for(uint64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//Check if the counter evenly divides the number
|
|
//If it does the counter and the other number are both divisors
|
|
if((num % possibleDivisor) == 0){
|
|
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
|
|
divisors.push_back(possibleDivisor);
|
|
//We still need to account for sqrt(num) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.push_back(num / possibleDivisor);
|
|
}
|
|
//Take care of a few occations where a number was added twice
|
|
if(divisors.at(divisors.size() - 1) == (possibleDivisor + 1)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
//Sort the vector for neatness
|
|
std::sort(divisors.begin(), divisors.end());
|
|
//Return the vector of divisors
|
|
return divisors;
|
|
}
|
|
|
|
//These functions return the numth Fibonacci number
|
|
template <class T>
|
|
T getFib(const T num){
|
|
//Make sure the number is within bounds
|
|
if(num <= 2){
|
|
return 1;
|
|
}
|
|
//Setup the variables
|
|
T fib = 0;
|
|
T tempNums[3];
|
|
tempNums[0] = tempNums[1] = 1;
|
|
|
|
//Do the calculation
|
|
unsigned int cnt;
|
|
for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
|
|
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
|
}
|
|
fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
|
|
|
|
return fib;
|
|
}
|
|
|
|
//This function returns a vector that includes all Fibonacci numbers <= num
|
|
template <class T>
|
|
std::vector<T> getAllFib(const T num){
|
|
std::vector<T> fibList;
|
|
//Make sure the number is within bounds
|
|
if(num <= 1){
|
|
fibList.push_back(1);
|
|
return fibList;
|
|
}
|
|
else{ //Make sure to add the first 2 elements
|
|
fibList.push_back(1);
|
|
fibList.push_back(1);
|
|
}
|
|
|
|
//Setup the variables
|
|
T fib = 0;
|
|
T tempNums[3];
|
|
tempNums[0] = tempNums[1] = 1;
|
|
|
|
//Do the calculation and add each number to the vector
|
|
for(T cnt = 2;(tempNums[(cnt - 1) % 3] <= num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
|
|
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
|
fibList.push_back(tempNums[cnt % 3]);
|
|
}
|
|
|
|
//If you triggered the exit statement you have one more element than you need
|
|
fibList.pop_back();
|
|
|
|
//Return the vector that contains all of the Fibonacci numbers
|
|
return fibList;
|
|
}
|
|
|
|
//This function converts a number to its binary equivalent
|
|
template <class T>
|
|
std::string toBin(T num){
|
|
//Convert the number to a binary string
|
|
std::string fullString = std::bitset<sizeof(T) * 8>(num).to_string();
|
|
//Remove leading zeros
|
|
int loc = 0;
|
|
for(loc = 0;(loc < fullString.size()) && (fullString[loc] == '0');++loc);
|
|
std::string trimmedString = fullString.substr(loc);
|
|
if(trimmedString == ""){
|
|
trimmedString = "0";
|
|
}
|
|
return trimmedString;
|
|
}
|
|
|
|
//Return the factorial of the number passed in
|
|
template <class T>
|
|
T factorial(T num){
|
|
T fact = 1;
|
|
for(T cnt = 1;cnt <= num;++cnt){
|
|
fact *= cnt;
|
|
}
|
|
return fact;
|
|
}
|
|
|
|
//A generator for prime numbers
|
|
template <class T>
|
|
mee::Generator<T> sieveOfEratosthenes(){
|
|
//Return 2 the first time, this lets us skip all even numbers later
|
|
co_yield 2;
|
|
|
|
int num = 0;
|
|
|
|
//Dictionary to hold the primes we have already found
|
|
std::unordered_map<T, std::vector<T>> dict;
|
|
|
|
//Start checking for primes with the number 3 and skip all even numbers
|
|
for(T possiblePrime = 3;true;possiblePrime += 2){
|
|
//If possiblePrime is in the dictionary it is a composite number
|
|
if(dict.contains(possiblePrime)){
|
|
//Move each number to its next odd multiple
|
|
for(T num : dict[possiblePrime]){
|
|
dict[possiblePrime + num + num].push_back(num);
|
|
}
|
|
//We no longer need this, free the memory
|
|
dict.erase(possiblePrime);
|
|
}
|
|
//If possiblePrime is not in the dictionary it is a new prime number
|
|
//Return it and mark its next multiple
|
|
else{
|
|
co_yield possiblePrime;
|
|
dict[possiblePrime * possiblePrime].push_back(possiblePrime);
|
|
}
|
|
}
|
|
}
|
|
//An alternate to sieveOfEratosthenes that uses map instead of unordered_map for greater compatibility but lower performance
|
|
template <class T>
|
|
mee::Generator<T> sieveOfEratosthenesAlt(){
|
|
//Return 2 the first time, this lets us skip all even numbers later
|
|
co_yield 2;
|
|
|
|
int num = 0;
|
|
|
|
//Dictionary to hold the primes we have already found
|
|
std::map<T, std::vector<T>> dict;
|
|
|
|
//Start checking for primes with the number 3 and skip all even numbers
|
|
for(T possiblePrime = 3;true;possiblePrime += 2){
|
|
//If possiblePrime is in the dictionary it is a composite number
|
|
if(dict.contains(possiblePrime)){
|
|
//Move each number to its next odd multiple
|
|
for(T num : dict[possiblePrime]){
|
|
dict[possiblePrime + num + num].push_back(num);
|
|
}
|
|
//We no longer need this, free the memory
|
|
dict.erase(possiblePrime);
|
|
}
|
|
//If possiblePrime is not in the dictionary it is a new prime number
|
|
//Return it and mark its next multiple
|
|
else{
|
|
co_yield possiblePrime;
|
|
dict[possiblePrime * possiblePrime].push_back(possiblePrime);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
#endif //MEE_NUMBER_ALGORITHMS_HPP
|