Files
CPPClasses/headers/mee/numberAlgorithms.hpp

347 lines
10 KiB
C++

//myClasses/headers/mee/numberAlgorithms.hpp
//Matthew Ellison
// Created: 07-02-21
//Modified: 07-02-21
//This file contains declarations of functions I have created to manipulate numbers
/*
Copyright (C) 2021 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef MEE_NUMBER_ALGORITHMS_HPP
#define MEE_NUMBER_ALGORITHMS_HPP
#include <algorithm>
#include <bitset>
#include <cinttypes>
#include <cmath>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
#include "Generator.hpp"
namespace mee{
//This function determines whether the number passed into it is a prime
template <class T>
bool isPrime(T possiblePrime){
if(possiblePrime <= 3){
return possiblePrime > 1;
}
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
return false;
}
for(T cnt = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
return false;
}
}
return true;
}
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
template <class T>
std::vector<T> getPrimes(T goalNumber){
std::vector<T> primes;
bool foundFactor = false;
//If the number is 1, 0, or a negative number return an empty vector
if(goalNumber <= 1){
return primes;
}
else{
primes.push_back(2);
}
//We can now start at 3 and skip all of the even numbers
for(T possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
if((possiblePrime % primes.at(cnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
primes.push_back(possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
std::sort(primes.begin(), primes.end());
return primes;
}
//This function returns a vector with a specific number of primes
template <class T>
std::vector<T> getNumPrimes(T numberOfPrimes){
std::vector<T> primes;
primes.reserve(numberOfPrimes); //Saves cycles later
bool foundFactor = false;
//If the number is 1, 0, or a negative number return an empty vector
if(numberOfPrimes <= 1){
return primes;
}
//Otherwise 2 is the first prime number
else{
primes.push_back(2);
}
//Loop through every odd number starting at 3 until we find the requisite number of primes
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
for(T possiblePrime = 3;(primes.size() < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
if((possiblePrime % primes.at(cnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
primes.push_back(possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
//The numbers should be in order, but sort them anyway just in case
std::sort(primes.begin(), primes.end());
return primes;
}
//This function returns all prime factors of a number
template <class T>
std::vector<T> getFactors(T goalNumber){
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
std::vector<T> primes = getPrimes((T)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
std::vector<T> factors;
//Need to step through each prime and see if it is a factor of the number
for(int cnt = 0;cnt < primes.size();){
if((goalNumber % primes[cnt]) == 0){
factors.push_back(primes[cnt]);
goalNumber /= primes[cnt];
}
else{
++cnt;
}
}
//If it didn't find any factors in the primes the number itself must be prime
if(factors.size() == 0){
factors.push_back(goalNumber);
goalNumber /= goalNumber;
}
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
return factors;
}
//This is a function that gets all the divisors of num and returns a vector containing the divisors
template <class T>
std::vector<T> getDivisors(T num){
std::vector<T> divisors; //Holds the number of divisors
//Ensure the parameter is a valid number
if(num <= 0){
return divisors;
}
else if(num == 1){
divisors.push_back(1);
return divisors;
}
//You only need to check up to sqrt(num)
T topPossibleDivisor = ceil(sqrt(num));
for(uint64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
//Check if the counter evenly divides the number
//If it does the counter and the other number are both divisors
if((num % possibleDivisor) == 0){
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
divisors.push_back(possibleDivisor);
//We still need to account for sqrt(num) being a divisor
if(possibleDivisor != topPossibleDivisor){
divisors.push_back(num / possibleDivisor);
}
//Take care of a few occations where a number was added twice
if(divisors.at(divisors.size() - 1) == (possibleDivisor + 1)){
++possibleDivisor;
}
}
}
//Sort the vector for neatness
std::sort(divisors.begin(), divisors.end());
//Return the vector of divisors
return divisors;
}
//These functions return the numth Fibonacci number
template <class T>
T getFib(const T num){
//Make sure the number is within bounds
if(num <= 2){
return 1;
}
//Setup the variables
T fib = 0;
T tempNums[3];
tempNums[0] = tempNums[1] = 1;
//Do the calculation
unsigned int cnt;
for(cnt = 2;(cnt < num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
}
fib = tempNums[(cnt - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
return fib;
}
//This function returns a vector that includes all Fibonacci numbers <= num
template <class T>
std::vector<T> getAllFib(const T num){
std::vector<T> fibList;
//Make sure the number is within bounds
if(num <= 1){
fibList.push_back(1);
return fibList;
}
else{ //Make sure to add the first 2 elements
fibList.push_back(1);
fibList.push_back(1);
}
//Setup the variables
T fib = 0;
T tempNums[3];
tempNums[0] = tempNums[1] = 1;
//Do the calculation and add each number to the vector
for(T cnt = 2;(tempNums[(cnt - 1) % 3] <= num) && (tempNums[(cnt - 1) % 3] >= tempNums[(cnt - 2) % 3]);++cnt){
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
fibList.push_back(tempNums[cnt % 3]);
}
//If you triggered the exit statement you have one more element than you need
fibList.pop_back();
//Return the vector that contains all of the Fibonacci numbers
return fibList;
}
//This function converts a number to its binary equivalent
template <class T>
std::string toBin(T num){
//Convert the number to a binary string
std::string fullString = std::bitset<sizeof(T) * 8>(num).to_string();
//Remove leading zeros
int loc = 0;
for(loc = 0;(loc < fullString.size()) && (fullString[loc] == '0');++loc);
std::string trimmedString = fullString.substr(loc);
if(trimmedString == ""){
trimmedString = "0";
}
return trimmedString;
}
//Return the factorial of the number passed in
template <class T>
T factorial(T num){
T fact = 1;
for(T cnt = 1;cnt <= num;++cnt){
fact *= cnt;
}
return fact;
}
//A generator for prime numbers
template <class T>
mee::Generator<T> sieveOfEratosthenes(){
//Return 2 the first time, this lets us skip all even numbers later
co_yield 2;
int num = 0;
//Dictionary to hold the primes we have already found
std::unordered_map<T, std::vector<T>> dict;
//Start checking for primes with the number 3 and skip all even numbers
for(T possiblePrime = 3;true;possiblePrime += 2){
//If possiblePrime is in the dictionary it is a composite number
if(dict.contains(possiblePrime)){
//Move each number to its next odd multiple
for(T num : dict[possiblePrime]){
dict[possiblePrime + num + num].push_back(num);
}
//We no longer need this, free the memory
dict.erase(possiblePrime);
}
//If possiblePrime is not in the dictionary it is a new prime number
//Return it and mark its next multiple
else{
co_yield possiblePrime;
dict[possiblePrime * possiblePrime].push_back(possiblePrime);
}
}
}
//An alternate to sieveOfEratosthenes that uses map instead of unordered_map for greater compatibility but lower performance
template <class T>
mee::Generator<T> sieveOfEratosthenesAlt(){
//Return 2 the first time, this lets us skip all even numbers later
co_yield 2;
int num = 0;
//Dictionary to hold the primes we have already found
std::map<T, std::vector<T>> dict;
//Start checking for primes with the number 3 and skip all even numbers
for(T possiblePrime = 3;true;possiblePrime += 2){
//If possiblePrime is in the dictionary it is a composite number
if(dict.contains(possiblePrime)){
//Move each number to its next odd multiple
for(T num : dict[possiblePrime]){
dict[possiblePrime + num + num].push_back(num);
}
//We no longer need this, free the memory
dict.erase(possiblePrime);
}
//If possiblePrime is not in the dictionary it is a new prime number
//Return it and mark its next multiple
else{
co_yield possiblePrime;
dict[possiblePrime * possiblePrime].push_back(possiblePrime);
}
}
}
}
#endif //MEE_NUMBER_ALGORITHMS_HPP