Files
CPPClasses/Algorithms.hpp

151 lines
4.5 KiB
C++

//myClasses/Algorithms.hpp
//Matthew Ellison
// Created: 11-8-18
//Modified: 11-8-18
//This file contains the declarations to several algoritms that I have found useful
#ifndef MEE_ALGORITHMS_HPP
#define MEE_ALGORITHMS_HPP
#include <vector>
#include <cinttypes>
#include <algorithm>
#include <string>
namespace mee{
//A list of functions in the file
//Also works as a declaration
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
template<class T>
std::vector<T> getPrimes(T goalNumber);
//This is a function that gets all the divisors of num and returns a vector containing the divisors
template<class T>
std::vector<T> getDivisors(T num);
//This is a function that gets the sum of all elements in a vector and returns the number
template <class T>
T getSum(std::vector<T> numbers);
//This is a function that searches a vecter for an element. Returns true if num is found in list
template<class T>
bool isFound(T num, std::vector<T> list);
//This is a function that creates all permutations of a string and returns a vector of those permutations.
//It is meant to have only the string passed into it from the calling function. num is used for recursion purposes
//It can however be used with num if you want the first num characters to be stationary
std::vector<std::string> getPermutations(std::string master, int num = 0);
template<class T>
std::vector<T> getPrimes(T goalNumber){
std::vector<T> primes;
bool foundFactor = false;
//If the number is 0 or a negative number return an empty vector
if(goalNumber < 1){
return primes;
}
//1 divides everything
primes.push_back(1);
//If the number is even 2 is a factor
if((goalNumber % 2) == 0){
primes.push_back(2);
}
//We can now start at 3 and skip all of the even numbers
for(T possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
for(uint64_t cnt = 0;(cnt < primes.size()) && ((primes.at(cnt) * primes.at(cnt)) < goalNumber);++cnt){
if((possiblePrime % primes.at(cnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then it must be prime
if(!foundFactor){
primes.push_back(possiblePrime);
}
//If you did find a factor you need to reset the flag
else{
foundFactor = false;
}
}
std::sort(primes.begin(), primes.end());
return primes;
}
template<class T>
std::vector<T> getDivisors(T num){
std::vector<T> divisors; //Holds the number of divisors
//You only need to go to sqrt(number). cnt * cnt is faster than sqrt()
for(int cnt = 1;cnt * cnt <= num;++cnt){
//Check if the counter evenly divides the number
//If it does the counter and the other number are both divisors
if((num % cnt) == 0){
if(!isFound(cnt, divisors)){
divisors.push_back(cnt);
}
if(!isFound(num/cnt, divisors)){
divisors.push_back(num / cnt);
}
}
}
std::sort(divisors.begin(), divisors.end());
return divisors;
}
template <class T>
T getSum(std::vector<T> numbers){
T sum = 0;
for(unsigned int cnt = 0;cnt < numbers.size();++cnt){
sum += numbers.at(cnt);
}
return sum;
}
template<class T>
bool isFound(T num, std::vector<T> list){
for(int cnt = 0;cnt < list.size();++cnt){
if(list.at(cnt) == num){
return true;
}
}
return false;
}
std::vector<std::string> getPermutations(std::string master, int num){
std::vector<std::string> perms;
//Check if the number is out of bounds
if((num >= master.size()) || (num < 0)){
return perms;
}
//If this is the last possible recurse just return the current string
else if(num == (master.size() - 1)){
perms.push_back(master);
return perms;
}
//If there are more possible recurses, recurse with the current permutation
std::vector<std::string> temp;
temp = getPermutations(master, num + 1);
perms.insert(perms.end(), temp.begin(), temp.end());
//You need to swap the current letter with every possible letter after it
//The ones needed to swap before will happen automatically when the function recurses
for(int cnt = 1;(num + cnt) < master.size();++cnt){
std::swap(master[num], master[num + cnt]);
temp = getPermutations(master, num + 1);
perms.insert(perms.end(), temp.begin(), temp.end());
std::swap(master[num], master[num + cnt]);
}
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
if(num == 0){
std::sort(perms.begin(), perms.end());
}
return perms;
}
}
#endif //MEE_ALGORITHMS_HPP