mirror of
https://bitbucket.org/Mattrixwv/my-classes.git
synced 2025-12-06 18:23:57 -05:00
408 lines
13 KiB
C++
408 lines
13 KiB
C++
//myClasses/Algorithms.hpp
|
|
//Matthew Ellison
|
|
// Created: 11-8-18
|
|
//Modified: 1-30-19
|
|
//This file contains the declarations and implementations to several algoritms that I have found useful
|
|
/*
|
|
Copyright (C) 2018 Matthew Ellison
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef MEE_ALGORITHMS_HPP
|
|
#define MEE_ALGORITHMS_HPP
|
|
|
|
#include <vector>
|
|
#include <cinttypes>
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <cmath>
|
|
//This library is licensed under lgplv3
|
|
//You can find more information at gmplib.org
|
|
//In order to use this functionality you must use the -DNEEDGMP flag in your compiler
|
|
//You must also link both libgmpxx and libgmp
|
|
#ifdef NEEDGMP
|
|
#include <gmpxx.h> //This is necessary for the getGmpFib function for numbers larger than a normal int can hold. It can be commented out if needed
|
|
#endif //NEEDGMP
|
|
|
|
namespace mee{
|
|
|
|
|
|
//A list of functions in the file
|
|
//Also works as prototypes with general information
|
|
//This is a function that returns all the primes <= goalNumber and returns a vector with those prime numbers
|
|
template<class T>
|
|
std::vector<T> getPrimes(T goalNumber);
|
|
//This function returns a vector with a specific number of primes
|
|
template<class T>
|
|
std::vector<T> getNumPrimes(T numberOfPrimes);
|
|
//This function returns all prime factors of a number
|
|
template<class T>
|
|
std::vector<T> getFactors(T goalNumber);
|
|
//This is a function that gets all the divisors of num and returns a vector containing the divisors
|
|
template<class T>
|
|
std::vector<T> getDivisors(T num);
|
|
//This is a function that gets the sum of all elements in a vector and returns the number
|
|
template <class T>
|
|
T getSum(std::vector<T> numbers);
|
|
//This is a function that searches a vecter for an element. Returns true if num is found in list
|
|
template<class T>
|
|
bool isFound(T num, std::vector<T> list);
|
|
//This is a function that creates all permutations of a string and returns a vector of those permutations.
|
|
//It is meant to have only the string passed into it from the calling function. num is used for recursion purposes
|
|
//It can however be used with num if you want the first num characters to be stationary
|
|
std::vector<std::string> getPermutations(std::string master, int num = 0);
|
|
//These functions return the numth Fibonacci number
|
|
uint64_t getFib(uint64_t num);
|
|
//In order to use this functionality you must use the -DNEEDGMP flag in your compiler
|
|
//You must also link both libgmpxx and libgmp
|
|
#ifdef NEEDGMP
|
|
mpz_class getMpzFib(uint64_t num);
|
|
#endif //NEEDGMP
|
|
//This is a function that performs a bubble sort on a vector
|
|
template<class T>
|
|
bool bubbleSort(std::vector<T> nums);
|
|
//This is a function that perfomrs a quick sort on a vector
|
|
template<class T>
|
|
bool quickSort(std::vector<T> nums);
|
|
//This is a function that performs a search on a vector and returns the subscript of the item being searched for (-1 if not found)
|
|
template<class T>
|
|
int64_t search(std::vector<T> nums, T num);
|
|
//This function finds the smallest element in a vector
|
|
template<class T>
|
|
T findMin(std::vector<T> arr);
|
|
//This function finds the largest element in a vector
|
|
template<class T>
|
|
T findMax(std::vector<T> arr);
|
|
|
|
|
|
template<class T>
|
|
std::vector<T> getPrimes(T goalNumber){
|
|
std::vector<T> primes;
|
|
bool foundFactor = false;
|
|
|
|
//If the number is 0 or a negative number return an empty vector
|
|
if(goalNumber < 1){
|
|
return primes;
|
|
}
|
|
|
|
//If the number is even 2 is a factor
|
|
if((goalNumber % 2) == 0){
|
|
primes.push_back(2);
|
|
}
|
|
//We can now start at 3 and skip all of the even numbers
|
|
for(T possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
|
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
|
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
|
|
if((possiblePrime % primes.at(cnt)) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
}
|
|
//If you didn't find a factor then it must be prime
|
|
if(!foundFactor){
|
|
primes.push_back(possiblePrime);
|
|
}
|
|
//If you did find a factor you need to reset the flag
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
std::sort(primes.begin(), primes.end());
|
|
return primes;
|
|
}
|
|
|
|
template<class T>
|
|
std::vector<T> getNumPrimes(T numberOfPrimes){
|
|
std::vector<T> primes;
|
|
primes.reserve(numberOfPrimes); //Saves cycles later
|
|
bool foundFactor = false;
|
|
|
|
//If the number is 0 or a negative number return an empty vector
|
|
if(numberOfPrimes < 1){
|
|
return primes;
|
|
}
|
|
//Otherwise 2 is the first prime number
|
|
else{
|
|
primes.push_back(2);
|
|
}
|
|
|
|
//Loop through every odd number starting at 3 until we find the requisite number of primes
|
|
//Using possiblePrime >= 3 to make sure it doesn't loop back around in an overflow error and create an infinite loop
|
|
for(T possiblePrime = 3;(primes.size() < numberOfPrimes) && (possiblePrime >= 3);possiblePrime += 2){
|
|
//Step through every element in the current primes. If you don't find anything that divides it, it must be a prime itself
|
|
uint64_t topPossibleFactor = ceil(sqrt(possiblePrime));
|
|
for(uint64_t cnt = 0;(cnt < primes.size()) && (primes.at(cnt) <= topPossibleFactor);++cnt){
|
|
if((possiblePrime % primes.at(cnt)) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
}
|
|
//If you didn't find a factor then it must be prime
|
|
if(!foundFactor){
|
|
primes.push_back(possiblePrime);
|
|
}
|
|
//If you did find a factor you need to reset the flag
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//The numbers should be in order, but sort them anyway just in case
|
|
std::sort(primes.begin(), primes.end());
|
|
return primes;
|
|
}
|
|
|
|
template<class T>
|
|
std::vector<T> getFactors(T goalNumber){
|
|
//Get all the prime numbers up to sqrt(number). If there is a prime < goalNumber it will have to be <= sqrt(goalNumber)
|
|
std::vector<T> primes = getPrimes((T)ceil(sqrt(goalNumber))); //Make sure you are getting a vector of the correct type
|
|
std::vector<T> factors;
|
|
|
|
//Need to step through each prime and see if it is a factor of the number
|
|
for(int cnt = 0;cnt < primes.size();){
|
|
if((goalNumber % primes[cnt]) == 0){
|
|
factors.push_back(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If it didn't find any factors in the primes the number itself must be prime
|
|
if(factors.size() == 0){
|
|
factors.push_back(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
///Should add some kind of error throwing inc ase the number != 1 after searching for all prime factors
|
|
|
|
return 0;
|
|
}
|
|
|
|
template<class T>
|
|
std::vector<T> getDivisors(T num){
|
|
std::vector<T> divisors; //Holds the number of divisors
|
|
//Ensure the parameter is a valid number
|
|
if(num <= 0){
|
|
return divisors;
|
|
}
|
|
else if(num == 1){
|
|
divisors.push_back(1);
|
|
}
|
|
else{
|
|
divisors.push_back(1);
|
|
divisors.push_back(num);
|
|
}
|
|
//You only need to check up to sqrt(num)
|
|
T topPossibleDivisor = ceil(sqrt(num));
|
|
for(uint64_t possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//Check if the counter evenly divides the number
|
|
//If it does the counter and the other number are both divisors
|
|
if((num % possibleDivisor) == 0){
|
|
//We don't need to check if the number already exists because we are only checking numbers <= sqrt(num), so there can be no duplicates
|
|
divisors.push_back(possibleDivisor);
|
|
//We still need to account for sqrt(num) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.push_back(num / possibleDivisor);
|
|
}
|
|
}
|
|
}
|
|
//Sort the vector for neatness
|
|
std::sort(divisors.begin(), divisors.end());
|
|
//Return the vector of divisors
|
|
return divisors;
|
|
}
|
|
|
|
template <class T>
|
|
T getSum(std::vector<T> numbers){
|
|
T sum = 0;
|
|
for(unsigned int cnt = 0;cnt < numbers.size();++cnt){
|
|
sum += numbers.at(cnt);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
template<class T>
|
|
bool isFound(T num, std::vector<T> list){
|
|
for(int cnt = 0;cnt < list.size();++cnt){
|
|
if(list.at(cnt) == num){
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::vector<std::string> getPermutations(std::string master, int num){
|
|
std::vector<std::string> perms;
|
|
//Check if the number is out of bounds
|
|
if((num >= master.size()) || (num < 0)){
|
|
return perms;
|
|
}
|
|
//If this is the last possible recurse just return the current string
|
|
else if(num == (master.size() - 1)){
|
|
perms.push_back(master);
|
|
return perms;
|
|
}
|
|
//If there are more possible recurses, recurse with the current permutation
|
|
std::vector<std::string> temp;
|
|
temp = getPermutations(master, num + 1);
|
|
perms.insert(perms.end(), temp.begin(), temp.end());
|
|
//You need to swap the current letter with every possible letter after it
|
|
//The ones needed to swap before will happen automatically when the function recurses
|
|
for(int cnt = 1;(num + cnt) < master.size();++cnt){
|
|
std::swap(master[num], master[num + cnt]);
|
|
temp = getPermutations(master, num + 1);
|
|
perms.insert(perms.end(), temp.begin(), temp.end());
|
|
std::swap(master[num], master[num + cnt]);
|
|
}
|
|
|
|
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
|
|
if(num == 0){
|
|
std::sort(perms.begin(), perms.end());
|
|
}
|
|
return perms;
|
|
}
|
|
|
|
uint64_t getFib(uint64_t num){
|
|
//Make sure the number is within bounds
|
|
if(num <= 2){
|
|
return 1;
|
|
}
|
|
//Setup the variables
|
|
uint64_t fib = 0;
|
|
uint64_t tempNums[3];
|
|
tempNums[0] = tempNums[1] = 1;
|
|
|
|
//Do the calculation
|
|
for(uint64_t cnt = 2;cnt < num;++cnt){
|
|
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
|
}
|
|
fib = tempNums[(num - 1) % 3]; //Transfer the answer to permanent variable. -1 to account for the offset of starting at 0
|
|
return fib;
|
|
}
|
|
|
|
//In order to use this functionality you must use the -DNEEDGMP flag in your compiler
|
|
//You must also link both libgmpxx and libgmp
|
|
#ifdef NEEDGMP
|
|
mpz_class getMpzFib(uint64_t num){
|
|
//Make sure the number is within bounds
|
|
if(num <= 0){
|
|
return 0;
|
|
}
|
|
else if(num <= 2){
|
|
return 1;
|
|
}
|
|
mpz_class fibNum = 0;
|
|
mpz_class tempNums[3];
|
|
//Initialize the variables
|
|
tempNums[0] = 1;
|
|
tempNums[1] = 1;
|
|
|
|
//Do the calculation
|
|
for(uint64_t cnt = 2;cnt < num;++cnt){
|
|
tempNums[cnt % 3] = tempNums[(cnt + 1) % 3] + tempNums[(cnt + 2) % 3];
|
|
}
|
|
|
|
return tempNums[(num - 1) % 3]; //Return the answer
|
|
}
|
|
#endif //NEEDGMP
|
|
|
|
//This is a function that performs a bubble sort on a vector
|
|
template<class T>
|
|
bool bubbleSort(std::vector<T> nums){
|
|
bool notFinished = true; //A flag to determine if the loop is finished
|
|
for(int numLoops = 0;notFinished;++numLoops){ //Loop until you finish
|
|
notFinished = false; //Assume you are finished until you find an element out of order
|
|
//Loop through every element in the vector, moving the largest one to the end
|
|
for(int cnt = 0;cnt < ((nums.size() - 1) - numLoops);++cnt){ //use size - 1 to make sure you don't go out of bounds
|
|
if(nums.at(cnt) > nums.at(cnt + 1)){
|
|
std::swap(nums.at(cnt), nums.at(cnt + 1));
|
|
notFinished = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//This is a function that perfomrs a quick sort on a vector
|
|
template<class T>
|
|
bool quickSort(std::vector<T> nums){
|
|
|
|
}
|
|
|
|
//This is a function that performs a search on a vector and returns the subscript of the item being searched for
|
|
template<class T>
|
|
int64_t search(std::vector<T> nums, T num){
|
|
int64_t subscript = 0; //Start with the subscript at 0
|
|
//Step through every element in the vector and return the subscript if you find the correct element
|
|
while(subscript < nums.size()){
|
|
if(nums.at(subscript) == num){
|
|
return subscript;
|
|
}
|
|
}
|
|
//If you cannot find the element return -1
|
|
return -1;
|
|
}
|
|
|
|
//This function finds the smallest element in a vector
|
|
template<class T>
|
|
T findMin(std::vector<T> arr){
|
|
T min; //For the smallest element
|
|
|
|
//Make sure the vector is not empty
|
|
if(arr.size() > 0){
|
|
//Use the first element as the smallest element
|
|
min = arr.at(0);
|
|
//Run through every element in the vector, checking it against the current minimum
|
|
for(int cnt = 1;cnt < arr.size();++cnt){
|
|
//If the current element is smaller than the minimum, make it the new minimum
|
|
if(arr.at(cnt) < min){
|
|
min = arr.at(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Return the element
|
|
return min;
|
|
}
|
|
|
|
//This function finds the largest element in a vector
|
|
template<class T>
|
|
T findMax(std::vector<T> arr){
|
|
T max; //For the largest element
|
|
|
|
//Make sure the vector is not empty
|
|
if(arr.size() > 0){
|
|
//Use the first element as the largest element
|
|
max = arr.at(0);
|
|
//Run through every element in the vector, checking it against the current minimum
|
|
for(int cnt = 1;cnt < arr.size();++cnt){
|
|
//If the current element is larger than the maximum, make it the new maximum
|
|
if(arr.at(cnt) > max){
|
|
max = arr.at(cnt);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Return the element
|
|
return max;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
#endif //MEE_ALGORITHMS_HPP
|