mirror of
https://bitbucket.org/Mattrixwv/csclasses.git
synced 2025-12-06 18:23:58 -05:00
748 lines
24 KiB
C#
748 lines
24 KiB
C#
//C#/CSClasses/Algorithms.cs
|
|
//Matthew Ellison
|
|
// Created: 08-23-20
|
|
//Modified: 08-23-20
|
|
//This file contains a class that is used to time the execution time of other programs
|
|
/*
|
|
Copyright (C) 2020 Matthew Ellison
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using System.Numerics;
|
|
|
|
|
|
namespace mee{
|
|
public class Algorithms{
|
|
//These functions return a list of all Fibonacci numbers <= goalNumber
|
|
public static List<int> GetAllFib(int goalNumber){
|
|
//Setup the variables
|
|
List<int> fibNums = new List<int>();
|
|
|
|
//If the number is <= 0 return an empty list
|
|
if(goalNumber <= 0){
|
|
return fibNums;
|
|
}
|
|
|
|
//This means that at least 2 1's are elements
|
|
fibNums.Add(1);
|
|
fibNums.Add(1);
|
|
|
|
//Loop to generate the rest of the Fibonacci numbers
|
|
while(fibNums[fibNums.Count - 1] <= goalNumber){
|
|
fibNums.Add(fibNums[fibNums.Count - 1] + fibNums[fibNums.Count - 2]);
|
|
}
|
|
|
|
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
|
fibNums.RemoveAt(fibNums.Count - 1);
|
|
return fibNums;
|
|
}
|
|
public static List<long> GetAllFib(long goalNumber){
|
|
//Setup the variables
|
|
List<long> fibNums = new List<long>();
|
|
|
|
//If the number is <= 0 return an empty list
|
|
if(goalNumber <= 0){
|
|
return fibNums;
|
|
}
|
|
|
|
//This means that at least 2 1's are elements
|
|
fibNums.Add(1);
|
|
fibNums.Add(1);
|
|
|
|
//Loop to generate the rest of the Fibonacci numbers
|
|
while(fibNums[fibNums.Count - 1] <= goalNumber){
|
|
fibNums.Add(fibNums[fibNums.Count - 1] + fibNums[fibNums.Count - 2]);
|
|
}
|
|
|
|
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
|
fibNums.RemoveAt(fibNums.Count - 1);
|
|
return fibNums;
|
|
}
|
|
public static List<BigInteger> GetAllFib(BigInteger goalNumber){
|
|
//Setup the variables
|
|
List<BigInteger> fibNums = new List<BigInteger>();
|
|
|
|
//If the number is <= 0 return am empty list
|
|
if(goalNumber <= 0){
|
|
return fibNums;
|
|
}
|
|
|
|
//This means that at least 2 1's are elements
|
|
fibNums.Add(1);
|
|
fibNums.Add(1);
|
|
|
|
//Loop to generate the rest of Fibonacci numbers
|
|
while(fibNums[fibNums.Count - 1] <= goalNumber){
|
|
fibNums.Add(fibNums[fibNums.Count - 1] + fibNums[fibNums.Count - 2]);
|
|
}
|
|
|
|
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
|
fibNums.RemoveAt(fibNums.Count - 1);
|
|
return fibNums;
|
|
}
|
|
//These functions return all factors of goalNumber
|
|
public static List<int> GetFactors(int goalNumber){
|
|
//You need to get all the primes that could be factors of this number so you can test them
|
|
int topPossiblePrime = (int)Math.Ceiling(Math.Sqrt(goalNumber));
|
|
List<int> primes = GetPrimes(topPossiblePrime);
|
|
List<int> factors = new List<int>();
|
|
|
|
//YOu need to step through each prime and see if it is a factor in the number
|
|
for(int cnt = 0;cnt < primes.Count;){
|
|
//If the prime is a factor you need to add it to the factor list
|
|
if((goalNumber % primes[cnt]) == 0){
|
|
factors.Add(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
//Otherwise advance the location in primes you are looking at
|
|
//By noit advancing if the prime is a factor you allow for multiple of the same prime as a factor
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If you didn't get any factors the number itself must be a prime
|
|
if(factors.Count == 0){
|
|
factors.Add(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
//If for some reason the goalNumber is not 1 throw an exception
|
|
if(goalNumber != 1){
|
|
throw new mee.Exceptions.InvalidResult("Factor did not end as 1");
|
|
}
|
|
|
|
//Return the list of factors
|
|
return factors;
|
|
}
|
|
public static List<long> GetFactors(long goalNumber){
|
|
//You need to get all the primes that could be factors of this number so you can test them
|
|
long topPossiblePrime = (long)Math.Ceiling(Math.Sqrt(goalNumber));
|
|
List<long> primes = GetPrimes(topPossiblePrime);
|
|
List<long> factors = new List<long>();
|
|
|
|
//YOu need to step through each prime and see if it is a factor in the number
|
|
for(int cnt = 0;cnt < primes.Count;){
|
|
//If the prime is a factor you need to add it to the factor list
|
|
if((goalNumber % primes[cnt]) == 0){
|
|
factors.Add(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
//Otherwise advance the location in primes you are looking at
|
|
//By noit advancing if the prime is a factor you allow for multiple of the same prime as a factor
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If you didn't get any factors the number itself must be a prime
|
|
if(factors.Count == 0){
|
|
factors.Add(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
//If for some reason the goalNumber is not 1 throw an exception
|
|
if(goalNumber != 1){
|
|
throw new mee.Exceptions.InvalidResult("Factor did not end as 1");
|
|
}
|
|
|
|
//Return the list of factors
|
|
return factors;
|
|
}
|
|
public static List<BigInteger> GetFactors(BigInteger goalNumber){
|
|
//You need to get all the primes that could be factors of this number so you can test them
|
|
BigInteger topPossiblePrime = (BigInteger)Math.Exp(BigInteger.Log(goalNumber) / 2);
|
|
List<BigInteger> primes = GetPrimes(topPossiblePrime);
|
|
List<BigInteger> factors = new List<BigInteger>();
|
|
|
|
//YOu need to step through each prime and see if it is a factor in the number
|
|
for(int cnt = 0;cnt < primes.Count;){
|
|
//If the prime is a factor you need to add it to the factor list
|
|
if((goalNumber % primes[cnt]) == 0){
|
|
factors.Add(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
//Otherwise advance the location in primes you are looking at
|
|
//By noit advancing if the prime is a factor you allow for multiple of the same prime as a factor
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If you didn't get any factors the number itself must be a prime
|
|
if(factors.Count == 0){
|
|
factors.Add(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
//If for some reason the goalNumber is not 1 throw an exception
|
|
if(goalNumber != 1){
|
|
throw new mee.Exceptions.InvalidResult("Factor did not end as 1");
|
|
}
|
|
|
|
//Return the list of factors
|
|
return factors;
|
|
}
|
|
//These functions return a list with all the prime number <= goalNumber
|
|
public static List<int> GetPrimes(int goalNumber){
|
|
List<int> primes = new List<int>(); //Holds the prime numbers
|
|
bool foundFactor = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.Add(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(int possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
int topPossibleFactor = (int)Math.Ceiling(Math.Sqrt(possiblePrime));
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(int primesCnt = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of range
|
|
if(primesCnt >= primes.Count){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.Add(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
//Sort the list before returning it
|
|
primes.Sort();
|
|
return primes;
|
|
}
|
|
public static List<long> GetPrimes(long goalNumber){
|
|
List<long> primes = new List<long>(); //Holds the prime numbers
|
|
bool foundFactor = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.Add(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(long possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
long topPossibleFactor = (long)Math.Ceiling(Math.Sqrt(possiblePrime));
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(int primesCnt = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of range
|
|
if(primesCnt >= primes.Count){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.Add(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
//Sort the list before returning it
|
|
primes.Sort();
|
|
return primes;
|
|
}
|
|
public static List<BigInteger> GetPrimes(BigInteger goalNumber){
|
|
List<BigInteger> primes = new List<BigInteger>(); //Holds the prime numbers
|
|
bool foundFactor = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.Add(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(BigInteger possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
BigInteger topPossibleFactor = (BigInteger)Math.Exp(BigInteger.Log(possiblePrime) / 2);
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(int primesCnt = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of range
|
|
if(primesCnt >= primes.Count){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.Add(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes.Sort();
|
|
return primes;
|
|
}
|
|
//This function gets a certain number of primes
|
|
public static List<int> GetNumPrimes(int numberOfPrimes){
|
|
List<int> primes = new List<int>(); //Holds the prime numbers
|
|
bool foundFactor = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.Add(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(int possiblePrime = 3;primes.Count < numberOfPrimes;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
int topPossibleFactor = (int)Math.Ceiling(Math.Sqrt(possiblePrime));
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(int primesCnt = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of bounds
|
|
if(primesCnt >= primes.Count){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.Add(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes.Sort();
|
|
return primes;
|
|
}
|
|
public static List<long> GetNumPrimes(long numberOfPrimes){
|
|
List<long> primes = new List<long>(); //Holds the prime numbers
|
|
bool foundFactor = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.Add(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(long possiblePrime = 3;primes.Count < numberOfPrimes;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
long topPossibleFactor = (long)Math.Ceiling(Math.Sqrt(possiblePrime));
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(int primesCnt = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of bounds
|
|
if(primesCnt >= primes.Count){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.Add(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes.Sort();
|
|
return primes;
|
|
}
|
|
public static List<BigInteger> GetNumPrimes(BigInteger numberOfPrimes){
|
|
List<BigInteger> primes = new List<BigInteger>(); //Holds the prime numbers
|
|
bool foundFactor = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.Add(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(BigInteger possiblePrime = 3;primes.Count < numberOfPrimes;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
BigInteger topPossibleFactor = (BigInteger)Math.Exp(BigInteger.Log(possiblePrime) / 2);
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(int primesCnt = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of bounds
|
|
if(primesCnt >= primes.Count){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.Add(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes.Sort();
|
|
return primes;
|
|
}
|
|
//These functions return all the divisors of goalNumber
|
|
public static List<int> GetDivisors(int goalNumber){
|
|
List<int> divisors = new List<int>();
|
|
//Start by checking that ht enumber is positive
|
|
if(goalNumber <= 0){
|
|
return divisors;
|
|
}
|
|
//If the number is 1 return just itself
|
|
else if(goalNumber == 1){
|
|
divisors.Add(1);
|
|
return divisors;
|
|
}
|
|
|
|
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
|
double topPossibleDivisor = Math.Ceiling(Math.Sqrt(goalNumber));
|
|
for(int possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//If you find one add it and the number it creates to the list
|
|
if((goalNumber % possibleDivisor) == 0){
|
|
divisors.Add(possibleDivisor);
|
|
//Account for the pssibility of sqrt(goalNumber) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.Add(goalNumber / possibleDivisor);
|
|
}
|
|
//Take care of a few occations where a number was added twice
|
|
if(divisors[divisors.Count - 1] == (possibleDivisor + 1)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it for neatness
|
|
divisors.Sort();
|
|
//Return the list
|
|
return divisors;
|
|
}
|
|
public static List<long> GetDivisors(long goalNumber){
|
|
List<long> divisors = new List<long>();
|
|
//Start by checking that ht enumber is positive
|
|
if(goalNumber <= 0){
|
|
return divisors;
|
|
}
|
|
//If the number is 1 return just itself
|
|
else if(goalNumber == 1){
|
|
divisors.Add(1);
|
|
return divisors;
|
|
}
|
|
|
|
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
|
double topPossibleDivisor = Math.Ceiling(Math.Sqrt(goalNumber));
|
|
for(long possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//If you find one add it and the number it creates to the list
|
|
if((goalNumber % possibleDivisor) == 0){
|
|
divisors.Add(possibleDivisor);
|
|
//Account for the pssibility of sqrt(goalNumber) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.Add(goalNumber / possibleDivisor);
|
|
}
|
|
//Take care of a few occations where a number was added twice
|
|
if(divisors[divisors.Count - 1] == (possibleDivisor + 1)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it for neatness
|
|
divisors.Sort();
|
|
//Return the list
|
|
return divisors;
|
|
}
|
|
public static List<BigInteger> GetDivisors(BigInteger goalNumber){
|
|
List<BigInteger> divisors = new List<BigInteger>();
|
|
//Start by checking that ht enumber is positive
|
|
if(goalNumber <= 0){
|
|
return divisors;
|
|
}
|
|
//If the number is 1 return just itself
|
|
else if(goalNumber == 1){
|
|
divisors.Add(1);
|
|
return divisors;
|
|
}
|
|
|
|
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
|
double topPossibleDivisor = Math.Exp(BigInteger.Log(goalNumber) / 2);
|
|
for(long possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//If you find one add it and the number it creates to the list
|
|
if((goalNumber % possibleDivisor) == 0){
|
|
divisors.Add(possibleDivisor);
|
|
//Account for the pssibility of sqrt(goalNumber) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.Add(goalNumber / possibleDivisor);
|
|
}
|
|
//Take care of a few occations where a number was added twice
|
|
if(divisors[divisors.Count - 1] == (possibleDivisor + 1)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it for neatness
|
|
divisors.Sort();
|
|
//Return the list
|
|
return divisors;
|
|
}
|
|
//These functions get a value from combining elements in an array
|
|
public static int GetSum(List<int> ary){
|
|
return ary.Sum();
|
|
}
|
|
public static long GetSum(List<long> ary){
|
|
return ary.Sum();
|
|
}
|
|
public static BigInteger GetSum(List<BigInteger> ary){
|
|
BigInteger sum = 0;
|
|
foreach(BigInteger num in ary){
|
|
sum += num;
|
|
}
|
|
return sum;
|
|
}
|
|
public static int GetProd(List<int> ary){
|
|
int prod = 1;
|
|
foreach(int num in ary){
|
|
prod *= num;
|
|
}
|
|
return prod;
|
|
}
|
|
public static long GetProd(List<long> ary){
|
|
long prod = 1;
|
|
foreach(long num in ary){
|
|
prod *= num;
|
|
}
|
|
return prod;
|
|
}
|
|
public static BigInteger GetProd(List<BigInteger> ary){
|
|
BigInteger prod = 1;
|
|
foreach(BigInteger num in ary){
|
|
prod *= num;
|
|
}
|
|
return prod;
|
|
}
|
|
//This is a function the creates all permutations of a string and returns a list of those permutations
|
|
public static List<string> GetPermutations(string master){
|
|
return GetPermutations(master, 0);
|
|
}
|
|
public static List<string> GetPermutations(string master, int num){
|
|
List<string> perms = new List<string>();
|
|
//Check if the number is out of bounds
|
|
if((num >= master.Length) || (num < 0)){
|
|
//Do nothing and return an empty list
|
|
}
|
|
//If this is the last possible recurse just return the current string
|
|
else if(num == (master.Length - 1)){
|
|
perms.Add(master);
|
|
}
|
|
//If there are more possible recurses, the recurse with the current permutation
|
|
else{
|
|
List<string> temp = GetPermutations(master, num + 1);
|
|
perms.AddRange(temp);
|
|
//You need to swap the current letter with every possible letter after it
|
|
//The ones needed to swap before will happen automatically when the function recurses
|
|
for(int cnt = 1;(num + cnt) < master.Length;++cnt){
|
|
master = SwapString(master, num, (num + cnt));
|
|
temp = GetPermutations(master, num + 1);
|
|
perms.AddRange(temp);
|
|
master = SwapString(master, num, (num + cnt));
|
|
}
|
|
|
|
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
|
|
if(num == 0){
|
|
perms.Sort();
|
|
}
|
|
}
|
|
|
|
//Return the list that was build
|
|
return perms;
|
|
}
|
|
public static string SwapString(string str, int first, int second){
|
|
char[] tempStr = str.ToCharArray();
|
|
char temp = str[first];
|
|
tempStr[first] = tempStr[second];
|
|
tempStr[second] = temp;
|
|
return new string(tempStr);
|
|
}
|
|
//This function returns the goalSubscript'th Fibonacci number
|
|
public static int GetFib(int goalSubscript){
|
|
//Setup the variables
|
|
int[] fibNums = {1, 1, 0}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
|
|
|
//If the number is <= 0 return 0
|
|
if(goalSubscript <= 0){
|
|
return 0;
|
|
}
|
|
|
|
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
int fibLoc;
|
|
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
|
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
|
}
|
|
|
|
//Return the proper number. The location counter is 1 off of the subscript
|
|
return fibNums[(fibLoc - 1) % 3];
|
|
}
|
|
public static long GetFib(long goalSubscript){
|
|
//Setup the variables
|
|
long[] fibNums = {1, 1, 0}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
|
|
|
//If the number is <= 0 return 0
|
|
if(goalSubscript <= 0){
|
|
return 0;
|
|
}
|
|
|
|
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
long fibLoc;
|
|
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
|
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
|
}
|
|
|
|
//Return the proper number. The location counter is 1 off of the subscript
|
|
return fibNums[(fibLoc - 1) % 3];
|
|
}
|
|
public static BigInteger GetFib(BigInteger goalSubscript){
|
|
//Setup the variables
|
|
BigInteger[] fibNums = {1, 1, 0}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
|
|
|
//If the number is <= 0 return 0
|
|
if(goalSubscript <= 0){
|
|
return 0;
|
|
}
|
|
|
|
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
long fibLoc;
|
|
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
|
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
|
}
|
|
|
|
//Return the proper number. The location counter is 1 off of the subscript
|
|
return fibNums[(fibLoc - 1) % 3];
|
|
}
|
|
//This function returns the GCD of the two numbers sent to it
|
|
public static int GCD(int num1, int num2){
|
|
while((num1 != 0) && (num2 != 0)){
|
|
if(num1 > num2){
|
|
num1 %= num2;
|
|
}
|
|
else{
|
|
num2 %= num1;
|
|
}
|
|
}
|
|
return num1 | num2;
|
|
}
|
|
public static long GCD(long num1, long num2){
|
|
while((num1 != 0) && (num2 != 0)){
|
|
if(num1 > num2){
|
|
num1 %= num2;
|
|
}
|
|
else{
|
|
num2 %= num1;
|
|
}
|
|
}
|
|
return num1 | num2;
|
|
}
|
|
public static BigInteger GCD(BigInteger num1, BigInteger num2){
|
|
while((num1 != 0) && (num2 != 0)){
|
|
if(num1 > num2){
|
|
num1 %= num2;
|
|
}
|
|
else{
|
|
num2 %= num1;
|
|
}
|
|
}
|
|
return num1 | num2;
|
|
}
|
|
//This function return sht enumber of times the character occurs in the string
|
|
public static long FindNumOccurrence(string str, char c){
|
|
return str.Count(ch => ch == c);
|
|
}
|
|
}
|
|
}
|