Added javadoc comments

This commit is contained in:
2024-08-11 21:31:00 -04:00
parent ae1346dbcd
commit 3feefdb7dd
12 changed files with 825 additions and 60 deletions

View File

@@ -1,10 +1,10 @@
//JavaClasses/src/main/java/mattrixwv/HexagonalNumberGenerator.java
//Matthew Ellison
// Created: 08-20-22
//Modified: 04-13-23
//Modified: 08-11-24
//This class generates hexagonal numbers
/*
Copyright (C) 2023 Matthew Ellison
Copyright (C) 2024 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
@@ -26,18 +26,48 @@ import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* A generator for hexagonal numbers, which implements the {@link Iterator} interface.
*
* <p>
* Hexagonal numbers are figurate numbers that represent hexagons. The n-th hexagonal number is given by
* the formula: H(n) = 2n^2 - n.
* </p>
*
* <p>
* This generator allows iteration over hexagonal numbers starting from the first.
* </p>
*/
public class HexagonalNumberGenerator implements Iterator<Long>{
/**
* The number to generate the next hexagonal number from.
*/
protected long num;
/**
* Constructs a new HexagonalNumberGenerator starting from the first hexagonal number.
*/
public HexagonalNumberGenerator(){
num = 1L;
}
/**
* Checks if there is a next hexagonal number that can be generated without overflow.
*
* @return {@code true} if the next hexagonal number can be generated, {@code false} otherwise
*/
@Override
public boolean hasNext(){
return (2 * num * num) > num;
}
/**
* Returns the next hexagonal number.
*
* @return the next hexagonal number
* @throws NoSuchElementException if the next hexagonal number would cause overflow
*/
@Override
public Long next(){
//If the number will result in an overflow throw an exception
@@ -52,6 +82,12 @@ public class HexagonalNumberGenerator implements Iterator<Long>{
return hexNum;
}
/**
* Checks if a given number is a hexagonal number.
*
* @param x the number to check
* @return {@code true} if the number is hexagonal, {@code false} otherwise
*/
public static boolean isHexagonal(Long x){
Long n = Math.round((Math.sqrt(1.0D + (8L * x)) + 1L) / 4L);
return ((2L * n * n) - n) == x;

View File

@@ -1,10 +1,10 @@
//JavaClasses/src/main/java/com/mattrixwv/generators/PentagonalNumberGenerator.java
//Mattrixwv
// Created: 08-20-22
//Modified: 04-13-23
//Modified: 08-11-24
//This class generates pentagonal numbers
/*
Copyright (C) 2023 Matthew Ellison
Copyright (C) 2024 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
@@ -26,18 +26,47 @@ import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* A generator for pentagonal numbers, which implements the {@link Iterator} interface.
*
* <p>
* Pentagonal numbers are figurate numbers that represent pentagons. The n-th pentagonal number is given by
* the formula: P(n) = (3n^2 - n) / 2.
* </p>
*
* <p>
* This generator allows iteration over pentagonal numbers starting from the first.
* </p>
*/
public class PentagonalNumberGenerator implements Iterator<Long>{
/**
* The number to generate the next pentagonal number from.
*/
protected long num;
/**
* Constructs a new PentagonalNumberGenerator starting from the first pentagonal number.
*/
public PentagonalNumberGenerator(){
num = 1L;
}
/**
* Checks if there is a next pentagonal number that can be generated without overflow.
*
* @return {@code true} if the next pentagonal number can be generated, {@code false} otherwise
*/
@Override
public boolean hasNext(){
return (3L * num * num) > num;
}
/**
* Returns the next pentagonal number.
*
* @return the next pentagonal number
* @throws NoSuchElementException if the next pentagonal number would cause overflow
*/
@Override
public Long next(){
if(!hasNext()){
@@ -49,6 +78,12 @@ public class PentagonalNumberGenerator implements Iterator<Long>{
return pentNum;
}
/**
* Checks if a given number is a pentagonal number.
*
* @param x the number to check
* @return {@code true} if the number is pentagonal, {@code false} otherwise
*/
public static boolean isPentagonal(Long x){
Long n = Math.round((Math.sqrt(1.0D + (24L * x)) + 1L) / 6L);
return (((3L * n * n) - n) / 2L) == x;

View File

@@ -1,10 +1,10 @@
//JavaClasses/src/main/java/mattrixwv/SieveOfEratosthenes.java
//Matthew Ellison
// Created: 06-30-21
//Modified: 04-13-23
//Modified: 08-11-24
//This class uses to Sieve of Eratosthenes to generate an infinite number of primes
/*
Copyright (C) 2023 Matthew Ellison
Copyright (C) 2024 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
@@ -30,21 +30,62 @@ import java.util.Map;
import java.util.NoSuchElementException;
/**
* A generator for prime numbers using the Sieve of Eratosthenes algorithm, which implements the {@link Iterator} interface.
*
* <p>
* This implementation generates prime numbers in an incremental fashion using a modified version of the Sieve of Eratosthenes algorithm.
* The algorithm uses a map to keep track of the multiples of found prime numbers to efficiently determine the next prime.
* </p>
*/
public class SieveOfEratosthenes implements Iterator<Long>{
/**
* The next possible prime to be found
*/
protected long possiblePrime;
/**
* A dictionary of the primes that have been found and their next multiple
*/
protected Map<Long, ArrayList<Long>> dict;
/**
* Constructs a new SieveOfEratosthenes instance with an empty prime dictionary
* and starts the search from the first possible prime number, 2.
*/
public SieveOfEratosthenes(){
dict = new HashMap<>();
possiblePrime = 2;
}
/**
* Indicates whether there is a next prime number available.
*
* <p>
* This method always returns {@code true} as the iterator is designed to
* generate primes indefinitely.
* </p>
*
* @return {@code true}, as the iterator can generate an infinite number of primes
*/
@Override
public boolean hasNext(){
return true;
}
/**
* Returns the next prime number.
*
* <p>
* The method generates the next prime number by checking and updating the
* internal map of known multiples. The first prime returned is 2, and subsequent
* primes are found by incrementing the possible prime number and checking its
* primality using the map.
* </p>
*
* @return the next prime number
* @throws NoSuchElementException if the next prime cannot be represented by a {@code long}
*/
@Override
public Long next(){
long prime;

View File

@@ -1,10 +1,10 @@
//JavaClasses/src/main/java/mattrixwv/SieveOfEratosthenesBig.java
//Matthew Ellison
// Created: 06-30-21
//Modified: 04-13-23
//Modified: 08-11-24
//This class uses to Sieve of Eratosthenes to generate an infinite number of primes
/*
Copyright (C) 2023 Matthew Ellison
Copyright (C) 2024 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
@@ -28,23 +28,65 @@ import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
/**
* A generator for prime numbers using the Sieve of Eratosthenes algorithm, which implements the {@link Iterator} interface.
*
* <p>
* This implementation generates prime numbers in an incremental fashion using a modified version of the Sieve of Eratosthenes algorithm.
* The algorithm uses a map to keep track of the multiples of found prime numbers to efficiently determine the next prime.
* </p>
*/
public class SieveOfEratosthenesBig implements Iterator<BigInteger>{
/**
* The next possible prime to be found
*/
protected BigInteger possiblePrime;
/**
* A dictionary of the primes that have been found and their next multiple
*/
protected Map<BigInteger, ArrayList<BigInteger>> dict;
/**
* Constructs a new SieveOfEratosthenes instance with an empty prime dictionary
* and starts the search from the first possible prime number, 2.
*/
public SieveOfEratosthenesBig(){
dict = new HashMap<>();
possiblePrime = BigInteger.TWO;
}
/**
* Indicates whether there is a next prime number available.
*
* <p>
* This method always returns {@code true} as the iterator is designed to
* generate primes indefinitely.
* </p>
*
* @return {@code true}, as the iterator can generate an infinite number of primes
*/
@Override
public boolean hasNext(){
return true;
}
/**
* Returns the next prime number.
*
* <p>
* The method generates the next prime number by checking and updating the
* internal map of known multiples. The first prime returned is 2, and subsequent
* primes are found by incrementing the possible prime number and checking its
* primality using the map.
* </p>
*
* @return the next prime number
* @throws NoSuchElementException if the next prime cannot be represented by a {@code long}
*/
@Override
public BigInteger next(){
BigInteger prime;
@@ -72,6 +114,10 @@ public class SieveOfEratosthenesBig implements Iterator<BigInteger>{
//Delete the current entry
dict.remove(possiblePrime);
}
//Protect against overflows
if(possiblePrime.compareTo(BigInteger.ZERO) < 0){
throw new NoSuchElementException("the next prime cannot be described by a long");
}
//Save that the number is a prime
prime = possiblePrime;
//Add the next entry to the prime dictionary

View File

@@ -1,10 +1,10 @@
//JavaClasses/src/main/java/com/mattrixwv/generators/TriangularNumberGenerator.java
//Mattrixwv
// Created: 08-20-22
//Modified: 04-13-23
//Modified: 08-11-24
//This class generates triangular numbers
/*
Copyright (C) 2023 Matthew Ellison
Copyright (C) 2024 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
@@ -26,19 +26,48 @@ import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* A generator for triangular numbers, which implements the {@link Iterator} interface.
*
* <p>
* Triangular numbers are figurate numbers that represent triangles. The n-th triangular number is given by
* the formula: T(n) = n(n + 1) / 2.
* </p>
*
* <p>
* This generator allows iteration over triangular numbers starting from the first.
* </p>
*/
public class TriangularNumberGenerator implements Iterator<Long>{
/**
* The number to generate the next triangular number from
*/
protected long num;
/**
* Constructs a new TriangularNumberGenerator starting from the first triangular number.
*/
public TriangularNumberGenerator(){
num = 1L;
}
/**
* Checks if there is a next triangular number that can be generated without overflow.
*
* @return {@code true} if the next triangular number can be generated, {@code false} otherwise
*/
@Override
public boolean hasNext(){
return ((num * num) + num) > num;
}
/**
* Returns the next triangular number.
*
* @return the next triangular number
* @throws NoSuchElementException if the next triangular number would cause overflow
*/
@Override
public Long next(){
if(!hasNext()){
@@ -50,6 +79,12 @@ public class TriangularNumberGenerator implements Iterator<Long>{
return newNum;
}
/**
* Checks if a given number is a triangular number.
*
* @param x the number to check
* @return {@code true} if the number is triangular, {@code false} otherwise
*/
public static boolean isTriangular(Long x){
Long n = Math.round((Math.sqrt(1.0D + (8L * x)) - 1L) / 2L);
return (((n * n) + n) / 2L) == x;