mirror of
https://bitbucket.org/Mattrixwv/javaclasses.git
synced 2025-12-07 23:43:58 -05:00
Moved files to a maven project
This commit is contained in:
844
src/main/java/mattrixwv/Algorithms.java
Normal file
844
src/main/java/mattrixwv/Algorithms.java
Normal file
@@ -0,0 +1,844 @@
|
||||
//src/main/java/mattrixwv/Algorithms.java
|
||||
//Matthew Ellison
|
||||
// Created: 03-02-19
|
||||
//Modified: 06-07-20
|
||||
//This class holds many algorithms that I have found it useful to keep around
|
||||
//As such all of the functions in here are static and meant to be used as stand alone functions
|
||||
/*
|
||||
Copyright (C) 2019 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
package mattrixwv;
|
||||
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
|
||||
|
||||
public class Algorithms{
|
||||
//This function returns a list with all the prime numbers <= goalNumber
|
||||
public static ArrayList<Integer> getPrimes(Integer goalNumber){
|
||||
ArrayList<Integer> primes = new ArrayList<Integer>(); //Holds the prime numbers
|
||||
Boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
if(goalNumber <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(2);
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
for(int possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;primes.get(primesCnt) <= topPossibleFactor.intValue();){
|
||||
if((possiblePrime % primes.get(primesCnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
}
|
||||
public static ArrayList<Long> getPrimes(Long goalNumber){
|
||||
ArrayList<Long> primes = new ArrayList<Long>(); //Holds the prime numbers
|
||||
Boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
if(goalNumber <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(2L);
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
for(Long possiblePrime = 3L;possiblePrime <= goalNumber;possiblePrime += 2L){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;primes.get(primesCnt) <= topPossibleFactor.intValue();){
|
||||
if((possiblePrime % primes.get(primesCnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
}
|
||||
public static ArrayList<BigInteger> getPrimes(BigInteger goalNumber){
|
||||
ArrayList<BigInteger> primes = new ArrayList<BigInteger>(); //Holds the prime numbers
|
||||
Boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numeber is 1, 0 or negative return an empty list
|
||||
if(goalNumber.compareTo(BigInteger.valueOf(1)) <= 0){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(BigInteger.valueOf(2));
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
for(BigInteger possiblePrime = BigInteger.valueOf(3);possiblePrime.compareTo(goalNumber) <= 0;possiblePrime = possiblePrime.add(BigInteger.valueOf(2))){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
BigInteger topPossibleFactor = possiblePrime.sqrt().add(BigInteger.valueOf(1));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;primes.get(primesCnt).compareTo(topPossibleFactor) <= 0;){
|
||||
if((possiblePrime.mod(primes.get(primesCnt))) == BigInteger.valueOf(0)){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
}
|
||||
//This function gets a certain number of primes
|
||||
public static ArrayList<Integer> getNumPrimes(Integer numberOfPrimes){
|
||||
ArrayList<Integer> primes = new ArrayList<Integer>(); //Holds the prime numbers
|
||||
Boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(2);
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
for(int possiblePrime = 3;primes.size() < numberOfPrimes;possiblePrime += 2){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;primes.get(primesCnt) <= topPossibleFactor.intValue();){
|
||||
if((possiblePrime % primes.get(primesCnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
}
|
||||
public static ArrayList<Long> getNumPrimes(Long numberOfPrimes){
|
||||
ArrayList<Long> primes = new ArrayList<Long>(); //Holds the prime numbers
|
||||
Boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(2L);
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
for(Long possiblePrime = 3L;primes.size() < numberOfPrimes;possiblePrime += 2L){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;primes.get(primesCnt) <= topPossibleFactor.intValue();){
|
||||
if((possiblePrime % primes.get(primesCnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
}
|
||||
public static ArrayList<BigInteger> getNumPrimes(BigInteger numberOfPrimes){
|
||||
ArrayList<BigInteger> primes = new ArrayList<BigInteger>(); //Holds the prime numbers
|
||||
Boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
if(numberOfPrimes.compareTo(BigInteger.valueOf(1)) <= 0){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(BigInteger.valueOf(2));
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
for(BigInteger possiblePrime = BigInteger.valueOf(3);numberOfPrimes.compareTo((BigInteger.valueOf(primes.size()))) > 0;possiblePrime = possiblePrime.add(BigInteger.valueOf(2))){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
BigInteger topPossibleFactor = possiblePrime.sqrt().add(BigInteger.valueOf(1));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;primes.get(primesCnt).compareTo(topPossibleFactor) <= 0;){
|
||||
if((possiblePrime.mod(primes.get(primesCnt))) == BigInteger.valueOf(0)){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
}
|
||||
//This function returns all factors of goalNumber
|
||||
public static ArrayList<Integer> getFactors(Integer goalNumber){
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
Double topPossiblePrime = Math.ceil(Math.sqrt(goalNumber));
|
||||
ArrayList<Integer> primes = getPrimes(topPossiblePrime.intValue());
|
||||
ArrayList<Integer> factors = new ArrayList<Integer>();
|
||||
|
||||
//You need to step through each prime and see if it is a factor in the number
|
||||
for(int cnt = 0;cnt < primes.size();){
|
||||
//If the prime is a factor you need to add it to the factor list
|
||||
if((goalNumber % primes.get(cnt)) == 0){
|
||||
factors.add(primes.get(cnt));
|
||||
goalNumber /= primes.get(cnt);
|
||||
}
|
||||
//Otherwise advance the location in primes you are looking at
|
||||
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||
else{
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't get any factors the number itself must be a prime
|
||||
if(factors.size() == 0){
|
||||
factors.add(goalNumber);
|
||||
goalNumber /= goalNumber;
|
||||
}
|
||||
|
||||
//If for some reason the goalNumber is not 1 throw an error
|
||||
///Need to add the appropriate error here
|
||||
|
||||
//Return the list of factors
|
||||
return factors;
|
||||
}
|
||||
public static ArrayList<Long> getFactors(Long goalNumber){
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
Double topPossiblePrime = Math.ceil(Math.sqrt(goalNumber));
|
||||
ArrayList<Long> primes = getPrimes(topPossiblePrime.longValue());
|
||||
ArrayList<Long> factors = new ArrayList<Long>();
|
||||
|
||||
//You need to step through each prime and see if it is a factor in the number
|
||||
for(int cnt = 0;cnt < primes.size();){
|
||||
//If the prime is a factor you need to add it to the factor list
|
||||
if((goalNumber % primes.get(cnt)) == 0){
|
||||
factors.add(primes.get(cnt));
|
||||
goalNumber /= primes.get(cnt);
|
||||
}
|
||||
//Otherwise advance the location in primes you are looking at
|
||||
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||
else{
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't get any factors the number itself must be a prime
|
||||
if(factors.size() == 0){
|
||||
factors.add(goalNumber);
|
||||
goalNumber /= goalNumber;
|
||||
}
|
||||
|
||||
//If for some reason the goalNumber is not 1 throw an error
|
||||
///Need to add the appropriate error here
|
||||
|
||||
//Return the list of factors
|
||||
return factors;
|
||||
}
|
||||
public static ArrayList<BigInteger> getFactors(BigInteger goalNumber){
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
BigInteger topPossiblePrime = goalNumber.sqrt();
|
||||
ArrayList<BigInteger> primes = getPrimes(topPossiblePrime);
|
||||
ArrayList<BigInteger> factors = new ArrayList<BigInteger>();
|
||||
|
||||
//You need to step through each prime and see if it is a factor in the number
|
||||
for(int cnt = 0;cnt < primes.size();){
|
||||
//If the prime is a factor you need to add it to the factor list
|
||||
if((goalNumber.mod(primes.get(cnt))).compareTo(BigInteger.valueOf(0)) == 0){
|
||||
factors.add(primes.get(cnt));
|
||||
goalNumber = goalNumber.divide(primes.get(cnt));
|
||||
}
|
||||
//Otherwise advance the location in primes you are looking at
|
||||
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||
else{
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't get any factors the number itself must be a prime
|
||||
if(factors.size() == 0){
|
||||
factors.add(goalNumber);
|
||||
goalNumber.divide(goalNumber);
|
||||
}
|
||||
|
||||
//If for some reason the goalNumber is not 1 throw an error
|
||||
///Need to add the appropriate error here
|
||||
|
||||
//Return the list of factors
|
||||
return factors;
|
||||
}
|
||||
//This function returns all the divisors of goalNumber
|
||||
public static ArrayList<Integer> getDivisors(Integer goalNumber){
|
||||
ArrayList<Integer> divisors = new ArrayList<Integer>();
|
||||
//Start by checking that the number is positive
|
||||
if(goalNumber <= 0){
|
||||
return divisors;
|
||||
}
|
||||
//If the number is 1 return just itself
|
||||
else if(goalNumber == 1){
|
||||
divisors.add(1);
|
||||
return divisors;
|
||||
}
|
||||
|
||||
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
||||
Double topPossibleDivisor = Math.ceil(Math.sqrt(goalNumber));
|
||||
for(Integer possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
||||
//If you find one add it and the number it creates to the list
|
||||
if((goalNumber % possibleDivisor) == 0){
|
||||
divisors.add(possibleDivisor);
|
||||
//Accound for the possibility of sqrt(goalNumber) being a divisor
|
||||
if(possibleDivisor != topPossibleDivisor.intValue()){
|
||||
divisors.add(goalNumber / possibleDivisor);
|
||||
}
|
||||
//Take care of a few occations where a number was added twice
|
||||
if(divisors.get(divisors.size() - 1) == (possibleDivisor + 1)){
|
||||
++possibleDivisor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it for neatness
|
||||
Collections.sort(divisors);
|
||||
//Return the list
|
||||
return divisors;
|
||||
}
|
||||
public static ArrayList<Long> getDivisors(Long goalNumber){
|
||||
ArrayList<Long> divisors = new ArrayList<Long>();
|
||||
//Start by checking that the number is positive
|
||||
if(goalNumber <= 0){
|
||||
return divisors;
|
||||
}
|
||||
//If the number is 1 return just itself
|
||||
else if(goalNumber == 1){
|
||||
divisors.add(1L);
|
||||
return divisors;
|
||||
}
|
||||
|
||||
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
||||
Double topPossibleDivisor = Math.ceil(Math.sqrt(goalNumber));
|
||||
for(Long possibleDivisor = 1L;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
||||
//If you find one add it and the number it creates to the list
|
||||
if((goalNumber % possibleDivisor) == 0){
|
||||
divisors.add(possibleDivisor);
|
||||
//Accound for the possibility of sqrt(goalNumber) being a divisor
|
||||
if(possibleDivisor != topPossibleDivisor.longValue()){
|
||||
divisors.add(goalNumber / possibleDivisor);
|
||||
}
|
||||
//Take care of a few occations where a number was added twice
|
||||
if(divisors.get(divisors.size() - 1) == (possibleDivisor + 1L)){
|
||||
++possibleDivisor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it for neatness
|
||||
Collections.sort(divisors);
|
||||
//Return the list
|
||||
return divisors;
|
||||
}
|
||||
public static ArrayList<BigInteger> getDivisors(BigInteger goalNumber){
|
||||
ArrayList<BigInteger> divisors = new ArrayList<BigInteger>();
|
||||
//Start by checking that the number is positive
|
||||
if(goalNumber.compareTo(BigInteger.valueOf(0)) <= 0){
|
||||
return divisors;
|
||||
}
|
||||
//If the number is 1 return just itself
|
||||
else if(goalNumber.equals(BigInteger.valueOf(1))){
|
||||
divisors.add(BigInteger.valueOf(1));
|
||||
return divisors;
|
||||
}
|
||||
|
||||
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
||||
BigInteger topPossibleDivisor = goalNumber.sqrt();
|
||||
for(BigInteger possibleDivisor = BigInteger.valueOf(1);possibleDivisor.compareTo(topPossibleDivisor) <= 0;possibleDivisor = possibleDivisor.add(BigInteger.valueOf(1))){
|
||||
//If you find one add it and the number it creates to the list
|
||||
if(goalNumber.mod(possibleDivisor).equals(BigInteger.valueOf(0))){
|
||||
divisors.add(possibleDivisor);
|
||||
//Accound for the possibility of sqrt(goalNumber) being a divisor
|
||||
if(!possibleDivisor.equals(topPossibleDivisor)){
|
||||
divisors.add(goalNumber.divide(possibleDivisor));
|
||||
}
|
||||
//Take care of a few occations where a number was added twice
|
||||
if(divisors.get(divisors.size() - 1).equals(possibleDivisor.add(BigInteger.valueOf(1L)))){
|
||||
possibleDivisor = possibleDivisor.add(BigInteger.valueOf(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it for neatness
|
||||
Collections.sort(divisors);
|
||||
//Return the list
|
||||
return divisors;
|
||||
}
|
||||
//This function returns all the divisors of goalNumber
|
||||
public static Integer getFib(Integer goalSubscript){
|
||||
//Setup the variables
|
||||
Integer[] fibNums = {1, 1, 0}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
||||
|
||||
//If the number is <= 0 return 0
|
||||
if(goalSubscript <= 0){
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
||||
Integer fibLoc = 2;
|
||||
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
||||
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
||||
}
|
||||
|
||||
//Return the propper number. The location counter is 1 off of the subscript
|
||||
return fibNums[(fibLoc - 1) % 3];
|
||||
}
|
||||
public static Long getFib(Long goalSubscript){
|
||||
//Setup the variables
|
||||
Long[] fibNums = {1L, 1L, 0L}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
||||
|
||||
//If the number is <= 0 return 0
|
||||
if(goalSubscript <= 0){
|
||||
return 0L;
|
||||
}
|
||||
|
||||
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
||||
Integer fibLoc = 2;
|
||||
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
||||
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
||||
}
|
||||
|
||||
//Return the propper number. The location counter is 1 off of the subscript
|
||||
return fibNums[(fibLoc - 1) % 3];
|
||||
}
|
||||
public static BigInteger getFib(BigInteger goalSubscript){
|
||||
//Setup the variables
|
||||
BigInteger[] fibNums = {BigInteger.valueOf(1), BigInteger.valueOf(1), BigInteger.valueOf(0)}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
||||
|
||||
//If the number is <= 0 return 0
|
||||
if(goalSubscript.compareTo(BigInteger.valueOf(0)) <= 0){
|
||||
return BigInteger.valueOf(0);
|
||||
}
|
||||
|
||||
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
||||
Integer fibLoc = 2;
|
||||
for(fibLoc = 2;goalSubscript.compareTo(BigInteger.valueOf(fibLoc)) > 0;++fibLoc){
|
||||
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3].add(fibNums[(fibLoc - 2) % 3]);
|
||||
}
|
||||
|
||||
//Return the propper number. The location counter is 1 off of the subscript
|
||||
return fibNums[(fibLoc - 1) % 3];
|
||||
}
|
||||
//This function returns a list of all Fibonacci numbers <= goalNumber
|
||||
public static ArrayList<Integer> getAllFib(Integer goalNumber){
|
||||
//Setup the variables
|
||||
ArrayList<Integer> fibNums = new ArrayList<Integer>(); //A list to save the Fibonacci numbers
|
||||
|
||||
//If the number is <= 0 return an empty list
|
||||
if(goalNumber <= 0){
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//This means that at least 2 1's are elements
|
||||
fibNums.add(1);
|
||||
fibNums.add(1);
|
||||
|
||||
//Loop to generate the rest of the Fibonacci numbers
|
||||
while(fibNums.get(fibNums.size() - 1) <= goalNumber){
|
||||
fibNums.add(fibNums.get(fibNums.size() - 1) + fibNums.get(fibNums.size() - 2));
|
||||
}
|
||||
|
||||
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
||||
fibNums.remove(fibNums.size() - 1);
|
||||
return fibNums;
|
||||
}
|
||||
public static ArrayList<Long> getAllFib(Long goalNumber){
|
||||
//Setup the variables
|
||||
ArrayList<Long> fibNums = new ArrayList<Long>(); //A list to save the Fibonacci numbers
|
||||
|
||||
//If the number is <= 0 return an empty list
|
||||
if(goalNumber <= 0){
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//This means that at least 2 1's are elements
|
||||
fibNums.add(1L);
|
||||
fibNums.add(1L);
|
||||
|
||||
//Loop to generate the rest of the Fibonacci numbers
|
||||
while(fibNums.get(fibNums.size() - 1) <= goalNumber){
|
||||
fibNums.add(fibNums.get(fibNums.size() - 1) + fibNums.get(fibNums.size() - 2));
|
||||
}
|
||||
|
||||
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
||||
fibNums.remove(fibNums.size() - 1);
|
||||
return fibNums;
|
||||
}
|
||||
public static ArrayList<BigInteger> getAllFib(BigInteger goalNumber){
|
||||
//Setup the variables
|
||||
ArrayList<BigInteger> fibNums = new ArrayList<BigInteger>(); //A list to save the Fibonacci numbers
|
||||
|
||||
//If the number is <= 0 return an empty list
|
||||
if(goalNumber.compareTo(BigInteger.valueOf(0)) <= 0){
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//This means that at least 2 1's are elements
|
||||
fibNums.add(BigInteger.valueOf(1));
|
||||
fibNums.add(BigInteger.valueOf(1));
|
||||
|
||||
//Loop to generate the rest of the Fibonacci numbers
|
||||
while(fibNums.get(fibNums.size() - 1).compareTo(goalNumber) <= 0){
|
||||
fibNums.add(fibNums.get(fibNums.size() - 1).add(fibNums.get(fibNums.size() - 2)));
|
||||
}
|
||||
|
||||
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
||||
fibNums.remove(fibNums.size() - 1);
|
||||
return fibNums;
|
||||
}
|
||||
//This function returns the factorial of the number passed to it
|
||||
public static Integer factorial(Integer num){
|
||||
Integer fact = 1; //The value of the factorial
|
||||
|
||||
//TODO: Throw an exception for values < 0
|
||||
//Loop through every number up to and including num and add the product to the factorial
|
||||
for(Integer cnt = 2;cnt.compareTo(num) <= 0;++cnt){
|
||||
fact *= cnt;
|
||||
}
|
||||
|
||||
return fact;
|
||||
}
|
||||
public static Long factorial(Long num){
|
||||
Long fact = 1L; //The value of the factorial
|
||||
|
||||
//Loop through every number up to and including num and add the product to the factorial
|
||||
for(Long cnt = 2L;cnt.compareTo(num) <= 0;++cnt){
|
||||
fact *= cnt;
|
||||
}
|
||||
|
||||
return fact;
|
||||
}
|
||||
public static BigInteger factorial(BigInteger num){
|
||||
BigInteger fact = BigInteger.valueOf(1L);
|
||||
|
||||
//Loop through every number up to and including num and add the product to the factorial
|
||||
for(BigInteger cnt = BigInteger.TWO;cnt.compareTo(num) <= 0;cnt = cnt.add(BigInteger.ONE)){
|
||||
fact = fact.multiply(cnt);
|
||||
}
|
||||
|
||||
return fact;
|
||||
}
|
||||
//This function returns the sum of all elements in the list
|
||||
public static Integer getSum(ArrayList<Integer> nums){
|
||||
//If a blank list was passed to the function return 0 as the sum
|
||||
if(nums.size() == 0){
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
Integer sum = 0;
|
||||
|
||||
//Loop through every element in the list and add them together
|
||||
for(Integer num : nums){
|
||||
sum += num;
|
||||
}
|
||||
|
||||
//Return the sum of all elements
|
||||
return sum;
|
||||
}
|
||||
public static Long getLongSum(ArrayList<Long> nums){
|
||||
//If a blank list was passed to the function return 0 as the sum
|
||||
if(nums.size() == 0){
|
||||
return 0L;
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
Long sum = 0L;
|
||||
|
||||
//Loop through every element in the list and add them together
|
||||
for(Long num : nums){
|
||||
sum += num;
|
||||
}
|
||||
|
||||
//Return the sum of all elements
|
||||
return sum;
|
||||
}
|
||||
public static BigInteger getBigSum(ArrayList<BigInteger> nums){
|
||||
//If a blank list was passed to the function return 0 as the sum
|
||||
if(nums.size() == 0){
|
||||
return BigInteger.valueOf(0);
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
BigInteger sum = BigInteger.valueOf(0);
|
||||
|
||||
//Loop through every element in the list and add them together
|
||||
for(BigInteger num : nums){
|
||||
sum = sum.add(num);
|
||||
}
|
||||
|
||||
//Return the sum of all elements
|
||||
return sum;
|
||||
}
|
||||
//This function returns the product of all elements in the list
|
||||
public static int getProd(ArrayList<Integer> nums){
|
||||
//If a blank list was passed tot he fuction return 0 as the product
|
||||
if(nums.size() == 0){
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
Integer product = 1; //Start at 1 because x * 1 = x
|
||||
|
||||
//Loop through every element in the list and multiply them together
|
||||
for(Integer num : nums){
|
||||
product *= num;
|
||||
}
|
||||
|
||||
//Return the product of all elements
|
||||
return product;
|
||||
}
|
||||
public static Long getLongProd(ArrayList<Long> nums){
|
||||
//If a blank list was passed tot he fuction return 0 as the product
|
||||
if(nums.size() == 0){
|
||||
return 0L;
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
Long product = 1L; //Start at 1 because x * 1 = x
|
||||
|
||||
//Loop through every element in the list and multiply them together
|
||||
for(Long num : nums){
|
||||
product *= num;
|
||||
}
|
||||
|
||||
//Return the product of all elements
|
||||
return product;
|
||||
}
|
||||
public static BigInteger getBigProd(ArrayList<BigInteger> nums){
|
||||
//If a blank list was passed tot he fuction return 0 as the product
|
||||
if(nums.size() == 0){
|
||||
return BigInteger.valueOf(0);
|
||||
}
|
||||
|
||||
//Setup the variables
|
||||
BigInteger product = BigInteger.valueOf(1); //Start at 1 because x * 1 = x
|
||||
|
||||
//Loop through every element in the list and multiply them together
|
||||
for(BigInteger num : nums){
|
||||
product = product.multiply(num);
|
||||
}
|
||||
|
||||
//Return the product of all elements
|
||||
return product;
|
||||
}
|
||||
//This function returns true if key is found in ary
|
||||
public static Boolean isFound(ArrayList<Integer> ary, Integer key){
|
||||
//Look through every element in the array, looing for the key element
|
||||
for(Integer num : ary){
|
||||
//If there is an element in the array that is the same as key return true
|
||||
if(num.equals(key)){
|
||||
return true;
|
||||
}
|
||||
}
|
||||
//If you made it to the end of the array without finding a match return false because the element was not found
|
||||
return false;
|
||||
}
|
||||
public static Boolean isLongFound(ArrayList<Long> ary, Long key){
|
||||
//Look through every element in the array, looing for the key element
|
||||
for(Long num : ary){
|
||||
//If there is an element in the array that is the same as key return true
|
||||
if(num.equals(key)){
|
||||
return true;
|
||||
}
|
||||
}
|
||||
//If you made it to the end of the array without finding a match return false because the element was not found
|
||||
return false;
|
||||
}
|
||||
public static Boolean isBigFound(ArrayList<BigInteger> ary, BigInteger key){
|
||||
//Look through every element in the array, looing for the key element
|
||||
for(BigInteger num : ary){
|
||||
//If there is an element in the array that is the same as key return true
|
||||
if(num.equals(key)){
|
||||
return true;
|
||||
}
|
||||
}
|
||||
//If you made it to the end of the array without finding a match return false because the element was not found
|
||||
return false;
|
||||
}
|
||||
//This is a function that creates all permutations of a string and returns a vector of those permutations.
|
||||
public static ArrayList<String> getPermutations(String master){
|
||||
return getPermutations(master, 0);
|
||||
}
|
||||
private static ArrayList<String> getPermutations(String master, Integer num){
|
||||
ArrayList<String> perms = new ArrayList<String>();
|
||||
//Check if the number is out of bounds
|
||||
if((num >= master.length()) || (num < 0)){
|
||||
//Do nothing and return an empty arraylist
|
||||
}
|
||||
//If this is the last possible recurse just return the current string
|
||||
else if(num == (master.length() - 1)){
|
||||
perms.add(master);
|
||||
}
|
||||
//If there are more possible recurses, recurse with the current permutation
|
||||
else{
|
||||
ArrayList<String> temp = new ArrayList<String>();
|
||||
temp = getPermutations(master, num + 1);
|
||||
perms.addAll(temp);
|
||||
//You need to swap the current letter with every possible letter after it
|
||||
//The ones needed to swap before will happen automatically when the function recurses
|
||||
for(Integer cnt = 1;(num + cnt) < master.length();++cnt){
|
||||
master = swapString(master, num, (num + cnt));
|
||||
temp = getPermutations(master, num + 1);
|
||||
perms.addAll(temp);
|
||||
master = swapString(master, num, (num + cnt));
|
||||
}
|
||||
|
||||
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
|
||||
if(num == 0){
|
||||
Collections.sort(perms);
|
||||
}
|
||||
}
|
||||
|
||||
//Return the arraylist that was built
|
||||
return perms;
|
||||
}
|
||||
public static String swapString(String str, Integer first, Integer second){
|
||||
char[] tempStr = str.toCharArray();
|
||||
char temp = tempStr[first];
|
||||
tempStr[first] = tempStr[second];
|
||||
tempStr[second] = temp;
|
||||
|
||||
String swappedString = new String(tempStr);
|
||||
return swappedString;
|
||||
}
|
||||
}
|
||||
142
src/main/java/mattrixwv/Stopwatch.java
Normal file
142
src/main/java/mattrixwv/Stopwatch.java
Normal file
@@ -0,0 +1,142 @@
|
||||
//src/main/java/mattrixwv/Stopwatch.java
|
||||
//Matthew Ellison (Mattrixwv)
|
||||
// Created: 03-01-19
|
||||
//Modified: 06-07-20
|
||||
//This file contains a class that is used to time the execution time of other programs
|
||||
/*
|
||||
Copyright (C) 2019 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
package mattrixwv;
|
||||
|
||||
|
||||
public class Stopwatch{
|
||||
private Long startTime;
|
||||
private Long stopTime;
|
||||
//Constructor makes sure all values are set to defaults
|
||||
public Stopwatch(){
|
||||
//Make sure both values are null so it is easier to detect incorrect function calling order
|
||||
startTime = null;
|
||||
stopTime = null;
|
||||
}
|
||||
//Returns a long with the elapsed time in nanoseconds. Used by other functions to get the time before converting it to the correct resolution
|
||||
private Long getTime(){
|
||||
if(startTime == null){
|
||||
///This should throw an exception instead of returning 0
|
||||
return 0L;
|
||||
}
|
||||
else if(stopTime == null){
|
||||
return System.nanoTime() - startTime;
|
||||
}
|
||||
else{
|
||||
return stopTime - startTime;
|
||||
}
|
||||
}
|
||||
//An enum that helps keep track of how many times the time has been reduced in the getStr function
|
||||
private enum TIME_RESOLUTION{ NANOSECOND, MICROSECOND, MILLISECOND, SECOND, MINUTE, HOUR, ERROR }
|
||||
//Simulates starting a stopwatch by saving the time
|
||||
public void start(){
|
||||
//Get the time as close to calling the function as possible
|
||||
startTime = System.nanoTime();
|
||||
//Make sure the stop time is reset to 0
|
||||
stopTime = null;
|
||||
}
|
||||
//SImulates stoping a stopwatch by saving the time
|
||||
public void stop(){
|
||||
//Set the stopTime as close to call time as possible
|
||||
stopTime = System.nanoTime();
|
||||
//If the startTime has not been set then reset stopTime
|
||||
if(startTime == null){
|
||||
stopTime = null;
|
||||
}
|
||||
}
|
||||
//Resets all variables in the stopwatch
|
||||
public void reset(){
|
||||
//Make sure all variables are reset correctly
|
||||
startTime = null;
|
||||
stopTime = null;
|
||||
}
|
||||
//Returns the time in nanoseconds
|
||||
public double getNano(){
|
||||
return getTime().doubleValue();
|
||||
}
|
||||
//Returns the time in microseconds
|
||||
public double getMicro(){
|
||||
return getTime().doubleValue() / 1000D;
|
||||
}
|
||||
//Returns the time in milliseconds
|
||||
public double getMilli(){
|
||||
return getTime().doubleValue() / 1000000D;
|
||||
}
|
||||
//Returns the time in seconds
|
||||
public double getSecond(){
|
||||
return getTime().doubleValue() / 1000000000D;
|
||||
}
|
||||
//Returns the time in minutes
|
||||
public double getMinute(){
|
||||
return getTime().doubleValue() / 60000000000D;
|
||||
}
|
||||
//Returns the time in hours
|
||||
public double getHour(){
|
||||
return getTime().doubleValue() / 3600000000000D;
|
||||
}
|
||||
//Returns the time as a string at the 'best' resolution. (Goal is xxx.xxx)
|
||||
public String getStr(){
|
||||
//Get the current duration from time
|
||||
Double duration = getTime().doubleValue();
|
||||
//Reduce the number to the appropriate number of digits. (xxx.x). This loop works down to seconds
|
||||
TIME_RESOLUTION resolution;
|
||||
for(resolution = TIME_RESOLUTION.NANOSECOND;(resolution.ordinal() < TIME_RESOLUTION.SECOND.ordinal()) && (duration >= 1000);resolution = TIME_RESOLUTION.values()[resolution.ordinal() + 1]){
|
||||
duration /= 1000;
|
||||
}
|
||||
//Check if the duration needs reduced to minutes
|
||||
if(duration >= 1000){
|
||||
//Reduce to minutes
|
||||
duration /= 60;
|
||||
resolution = TIME_RESOLUTION.values()[resolution.ordinal() + 1];
|
||||
}
|
||||
//Check if the duration needs reduced to hours
|
||||
if(duration >= 1000){
|
||||
//Reduce to hours
|
||||
duration /= 60;
|
||||
resolution = TIME_RESOLUTION.values()[resolution.ordinal() + 1];
|
||||
}
|
||||
|
||||
//Turn the number into a string
|
||||
Double durationFraction = ((duration % 1) * 1000);
|
||||
String time = String.format("%d.%03d", duration.intValue(), durationFraction.intValue());
|
||||
|
||||
//Tack on the appropriate suffix for resolution
|
||||
switch(resolution){
|
||||
case NANOSECOND: time += " nanoseconds"; break;
|
||||
case MICROSECOND: time += " microseconds"; break;
|
||||
case MILLISECOND: time += " milliseconds"; break;
|
||||
case SECOND: time += " seconds"; break;
|
||||
case MINUTE: time += " minutes"; break;
|
||||
case HOUR: time += " hours"; break;
|
||||
case ERROR:
|
||||
default: time = "There was an error computing the time"; break; ///This should throw an error instead
|
||||
}
|
||||
//Return the string
|
||||
return time;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString(){
|
||||
return getStr();
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user