mirror of
https://bitbucket.org/Mattrixwv/javaclasses.git
synced 2025-12-07 07:23:57 -05:00
Fixed some typos
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
//src/main/java/mattrixwv/Algorithms.java
|
||||
//Matthew Ellison
|
||||
// Created: 03-02-19
|
||||
//Modified: 06-07-20
|
||||
//Modified: 06-15-20
|
||||
//This class holds many algorithms that I have found it useful to keep around
|
||||
//As such all of the functions in here are static and meant to be used as stand alone functions
|
||||
/*
|
||||
@@ -173,7 +173,7 @@ public class Algorithms{
|
||||
ArrayList<Integer> primes = new ArrayList<Integer>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= 1){
|
||||
return primes;
|
||||
}
|
||||
@@ -182,7 +182,7 @@ public class Algorithms{
|
||||
primes.add(2);
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
for(int possiblePrime = 3;primes.size() < numberOfPrimes;possiblePrime += 2){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
@@ -195,7 +195,7 @@ public class Algorithms{
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
//Check if the index has gone out of bounds
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
@@ -218,7 +218,7 @@ public class Algorithms{
|
||||
ArrayList<Long> primes = new ArrayList<Long>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= 1){
|
||||
return primes;
|
||||
}
|
||||
@@ -227,7 +227,7 @@ public class Algorithms{
|
||||
primes.add(2L);
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
for(long possiblePrime = 3L;primes.size() < numberOfPrimes;possiblePrime += 2L){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
@@ -240,7 +240,7 @@ public class Algorithms{
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
//Check if the index has gone out of bounds
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
@@ -263,7 +263,7 @@ public class Algorithms{
|
||||
ArrayList<BigInteger> primes = new ArrayList<BigInteger>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the numebr is 0 or negative return an empty list
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(numberOfPrimes.compareTo(BigInteger.valueOf(1)) <= 0){
|
||||
return primes;
|
||||
}
|
||||
@@ -272,7 +272,7 @@ public class Algorithms{
|
||||
primes.add(BigInteger.valueOf(2));
|
||||
}
|
||||
|
||||
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
|
||||
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
for(BigInteger possiblePrime = BigInteger.valueOf(3);numberOfPrimes.compareTo((BigInteger.valueOf(primes.size()))) > 0;possiblePrime = possiblePrime.add(BigInteger.valueOf(2))){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
BigInteger topPossibleFactor = possiblePrime.sqrt().add(BigInteger.valueOf(1));
|
||||
@@ -285,7 +285,7 @@ public class Algorithms{
|
||||
else{
|
||||
++primesCnt;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
//Check if the index has gone out of bounds
|
||||
if(primesCnt >= primes.size()){
|
||||
break;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user