Added number generators

This commit is contained in:
2022-08-20 13:46:58 -04:00
parent e0825fe96e
commit 8f35397177
21 changed files with 441 additions and 17 deletions

View File

@@ -0,0 +1,138 @@
//JavaClasses/src/main/java/mattrixwv/ArrayAlgorithms.java
//Matthew Ellison
// Created: 07-03-21
//Modified: 06-25-22
//This class contains algorithms for vectors that I've found it useful to keep around
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.StringJoiner;
public class ArrayAlgorithms{
private ArrayAlgorithms(){}
//This function returns the sum of all elements in the list
public static int getSum(Iterable<Integer> nums){
//Setup the variables
int sum = 0;
//Loop through every element in the list and add them together
for(int num : nums){
sum += num;
}
//Return the sum of all elements
return sum;
}
public static long getLongSum(Iterable<Long> nums){
//Setup the variables
long sum = 0;
//Loop through every element in the list and add them together
for(long num : nums){
sum += num;
}
//Return the sum of all elements
return sum;
}
public static BigInteger getBigSum(Iterable<BigInteger> nums){
//Setup the variables
BigInteger sum = BigInteger.ZERO;
//Loop through every element in the list and add them together
for(BigInteger num : nums){
sum = sum.add(num);
}
//Return the sum of all elements
return sum;
}
//This function returns the product of all elements in the list
public static int getProd(Iterable<Integer> nums){
//If a blank list was passed tot he fuction return 0 as the product
if(!nums.iterator().hasNext()){
return 0;
}
//Setup the variables
int product = 1; //Start at 1 because x * 1 = x
//Loop through every element in the list and multiply them together
for(int num : nums){
product *= num;
}
//Return the product of all elements
return product;
}
public static long getLongProd(Iterable<Long> nums){
//If a blank list was passed tot he fuction return 0 as the product
if(!nums.iterator().hasNext()){
return 0L;
}
//Setup the variables
long product = 1L; //Start at 1 because x * 1 = x
//Loop through every element in the list and multiply them together
for(long num : nums){
product *= num;
}
//Return the product of all elements
return product;
}
public static BigInteger getBigProd(Iterable<BigInteger> nums){
//If a blank list was passed tot he fuction return 0 as the product
if(!nums.iterator().hasNext()){
return BigInteger.valueOf(0);
}
//Setup the variables
BigInteger product = BigInteger.valueOf(1); //Start at 1 because x * 1 = x
//Loop through every element in the list and multiply them together
for(BigInteger num : nums){
product = product.multiply(num);
}
//Return the product of all elements
return product;
}
//Print a list
public static <T> String printList(Iterable<T> list){
StringJoiner returnString = new StringJoiner(", ", "[", "]");
for(T obj : list){
returnString.add(obj.toString());
}
return returnString.toString();
}
//Convert lists
public static List<Integer> longToInt(List<Long> originalList){
ArrayList<Integer> newList = new ArrayList<>(originalList.size());
for(Long num : originalList){
newList.add(num.intValue());
}
return newList;
}
}

View File

@@ -0,0 +1,529 @@
//JavaClasses/src/main/java/mattrixwv/NumberAlgorithms.java
//Matthew Ellison
// Created: 07-03-21
//Modified: 06-25-22
//This class contains algorithms for numbers that I've found it useful to keep around
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv;
import java.math.BigInteger;
import java.security.InvalidParameterException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import com.mattrixwv.exceptions.InvalidResult;
public class NumberAlgorithms{
private NumberAlgorithms(){}
public static final String FACTORIAL_NEGATIVE_MESSAGE = "n! cannot be negative";
//This function returns a list with all the prime numbers <= goalNumber
public static List<Integer> getPrimes(int goalNumber){
return ArrayAlgorithms.longToInt(getPrimes((long) goalNumber));
}
public static List<Long> getPrimes(long goalNumber){
ArrayList<Long> primes = new ArrayList<>(); //Holds the prime numbers
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
//If the numebr is 0 or negative return an empty list
if(goalNumber <= 1){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.add(2L);
}
//We cna now start at 3 and skipp all even numbers, because they cannot be prime
for(long possiblePrime = 3L;possiblePrime <= goalNumber;possiblePrime += 2L){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(int primesCnt = 0;(primesCnt < primes.size()) && (primes.get(primesCnt) <= topPossibleFactor.intValue());++primesCnt){
if((possiblePrime % primes.get(primesCnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.add(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
Collections.sort(primes);
return primes;
}
public static List<BigInteger> getPrimes(BigInteger goalNumber){
ArrayList<BigInteger> primes = new ArrayList<>(); //Holds the prime numbers
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
//If the number is 1, 0 or negative return an empty list
if(goalNumber.compareTo(BigInteger.valueOf(1)) <= 0){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.add(BigInteger.valueOf(2));
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(BigInteger possiblePrime = BigInteger.valueOf(3);possiblePrime.compareTo(goalNumber) <= 0;possiblePrime = possiblePrime.add(BigInteger.valueOf(2))){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
BigInteger topPossibleFactor = possiblePrime.sqrt().add(BigInteger.valueOf(1));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(int primesCnt = 0;(primesCnt < primes.size()) && (primes.get(primesCnt).compareTo(topPossibleFactor) <= 0);++primesCnt){
if((possiblePrime.mod(primes.get(primesCnt))) == BigInteger.valueOf(0)){
foundFactor = true;
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.add(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
Collections.sort(primes);
return primes;
}
//This function gets a certain number of primes
public static List<Integer> getNumPrimes(int numberOfPrimes){
return ArrayAlgorithms.longToInt(getNumPrimes((long)numberOfPrimes));
}
public static List<Long> getNumPrimes(long numberOfPrimes){
ArrayList<Long> primes = new ArrayList<>(); //Holds the prime numbers
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or negative return an empty list
if(numberOfPrimes < 1){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.add(2L);
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(long possiblePrime = 3L;primes.size() < numberOfPrimes;possiblePrime += 2L){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(int primesCnt = 0;(primesCnt < primes.size()) && (primes.get(primesCnt) <= topPossibleFactor.intValue());++primesCnt){
if((possiblePrime % primes.get(primesCnt)) == 0){
foundFactor = true;
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.add(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
Collections.sort(primes);
return primes;
}
public static List<BigInteger> getNumPrimes(BigInteger numberOfPrimes){
ArrayList<BigInteger> primes = new ArrayList<>(); //Holds the prime numbers
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or negative return an empty list
if(numberOfPrimes.compareTo(BigInteger.valueOf(1)) < 0){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.add(BigInteger.valueOf(2));
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(BigInteger possiblePrime = BigInteger.valueOf(3);numberOfPrimes.compareTo((BigInteger.valueOf(primes.size()))) > 0;possiblePrime = possiblePrime.add(BigInteger.valueOf(2))){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
BigInteger topPossibleFactor = possiblePrime.sqrt().add(BigInteger.valueOf(1));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(int primesCnt = 0;(primesCnt < primes.size()) && (primes.get(primesCnt).compareTo(topPossibleFactor) <= 0);++primesCnt){
if((possiblePrime.mod(primes.get(primesCnt))) == BigInteger.valueOf(0)){
foundFactor = true;
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.add(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
Collections.sort(primes);
return primes;
}
//This function return true if the value passed to it is prime
public static boolean isPrime(long possiblePrime){
if(possiblePrime <= 3){
return possiblePrime > 1;
}
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
return false;
}
for(long cnt = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
return false;
}
}
return true;
}
public static boolean isPrime(BigInteger possiblePrime){
if(possiblePrime.compareTo(BigInteger.valueOf(3)) <= 0){
return possiblePrime.compareTo(BigInteger.ONE) > 0;
}
else if(possiblePrime.mod(BigInteger.TWO).equals(BigInteger.ZERO) || possiblePrime.mod(BigInteger.valueOf(3)).equals(BigInteger.ZERO)){
return false;
}
for(BigInteger cnt = BigInteger.valueOf(5);(cnt.multiply(cnt)).compareTo(possiblePrime) <= 0;cnt = cnt.add(BigInteger.valueOf(6))){
if(possiblePrime.mod(cnt).equals(BigInteger.ZERO) || possiblePrime.mod(cnt.add(BigInteger.TWO)).equals(BigInteger.ZERO)){
return false;
}
}
return true;
}
//This function returns all factors of goalNumber
public static List<Integer> getFactors(int goalNumber) throws InvalidResult{
return ArrayAlgorithms.longToInt(getFactors((long)goalNumber));
}
public static List<Long> getFactors(long goalNumber) throws InvalidResult{
//You need to get all the primes that could be factors of this number so you can test them
Double topPossiblePrime = Math.ceil(Math.sqrt(goalNumber));
List<Long> primes = getPrimes(topPossiblePrime.longValue());
ArrayList<Long> factors = new ArrayList<>();
//You need to step through each prime and see if it is a factor in the number
for(int cnt = 0;cnt < primes.size();){
//If the prime is a factor you need to add it to the factor list
if((goalNumber % primes.get(cnt)) == 0){
factors.add(primes.get(cnt));
goalNumber /= primes.get(cnt);
}
//Otherwise advance the location in primes you are looking at
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
else{
++cnt;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.isEmpty()){
factors.add(goalNumber);
goalNumber /= goalNumber;
}
//If for some reason the goalNumber is not 1 throw an error
if(goalNumber != 1){
throw new InvalidResult("The factor was not 1: " + goalNumber);
}
//Return the list of factors
return factors;
}
public static List<BigInteger> getFactors(BigInteger goalNumber) throws InvalidResult{
//You need to get all the primes that could be factors of this number so you can test them
BigInteger topPossiblePrime = goalNumber.sqrt();
List<BigInteger> primes = getPrimes(topPossiblePrime);
ArrayList<BigInteger> factors = new ArrayList<>();
//You need to step through each prime and see if it is a factor in the number
for(int cnt = 0;cnt < primes.size();){
//If the prime is a factor you need to add it to the factor list
if((goalNumber.mod(primes.get(cnt))).compareTo(BigInteger.valueOf(0)) == 0){
factors.add(primes.get(cnt));
goalNumber = goalNumber.divide(primes.get(cnt));
}
//Otherwise advance the location in primes you are looking at
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
else{
++cnt;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.isEmpty()){
factors.add(goalNumber);
goalNumber = goalNumber.divide(goalNumber);
}
//If for some reason the goalNumber is not 1 throw an error
if(!goalNumber.equals(BigInteger.ONE)){
throw new InvalidResult("The factor was not 1: " + goalNumber);
}
//Return the list of factors
return factors;
}
//This function returns all the divisors of goalNumber
public static List<Integer> getDivisors(int goalNumber){
return ArrayAlgorithms.longToInt(getDivisors((long)goalNumber));
}
public static List<Long> getDivisors(long goalNumber){
HashSet<Long> divisors = new HashSet<>();
//Start by checking that the number is positive
if(goalNumber <= 0){
return new ArrayList<>();
}
else{
divisors.add(1L);
divisors.add(goalNumber);
}
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
Double topPossibleDivisor = Math.ceil(Math.sqrt(goalNumber));
for(long possibleDivisor = 2L;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
//If you find one add it and the number it creates to the list
if((goalNumber % possibleDivisor) == 0){
long possibleDivisor2 = goalNumber / possibleDivisor;
divisors.add(possibleDivisor);
divisors.add(possibleDivisor2);
}
}
ArrayList<Long> divisorList = new ArrayList<>(divisors);
//Sort the list before returning it for neatness
Collections.sort(divisorList);
//Return the list
return divisorList;
}
public static List<BigInteger> getDivisors(BigInteger goalNumber){
HashSet<BigInteger> divisors = new HashSet<>();
//Start by checking that the number is positive
if(goalNumber.compareTo(BigInteger.valueOf(0)) <= 0){
return new ArrayList<>();
}
else{
divisors.add(BigInteger.valueOf(1));
divisors.add(goalNumber);
}
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
BigInteger topPossibleDivisor = goalNumber.sqrt();
for(BigInteger possibleDivisor = BigInteger.TWO;possibleDivisor.compareTo(topPossibleDivisor) <= 0;possibleDivisor = possibleDivisor.add(BigInteger.valueOf(1))){
//If you find one add it and the number it creates to the list
if(goalNumber.mod(possibleDivisor).equals(BigInteger.valueOf(0))){
BigInteger possibleDivisor2 = goalNumber.divide(possibleDivisor);
divisors.add(possibleDivisor);
divisors.add(possibleDivisor2);
}
}
ArrayList<BigInteger> divisorList = new ArrayList<>(divisors);
//Sort the list before returning it for neatness
Collections.sort(divisorList);
//Return the list
return divisorList;
}
//This function returns the goalSubscript'th Fibonacci number
public static int getFib(int goalSubscript){
return (int)getFib((long)goalSubscript);
}
public static long getFib(long goalSubscript){
//Setup the variables
long[] fibNums = {1L, 1L, 0L}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
//If the number is <= 0 return 0
if(goalSubscript <= 0){
return 0L;
}
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
int fibLoc;
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
}
//Return the proper number. The location counter is 1 off of the subscript
return fibNums[(fibLoc - 1) % 3];
}
public static BigInteger getFib(BigInteger goalSubscript){
//Setup the variables
BigInteger[] fibNums = {BigInteger.valueOf(1), BigInteger.valueOf(1), BigInteger.valueOf(0)}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
//If the number is <= 0 return 0
if(goalSubscript.compareTo(BigInteger.valueOf(0)) <= 0){
return BigInteger.valueOf(0);
}
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
int fibLoc;
for(fibLoc = 2;goalSubscript.compareTo(BigInteger.valueOf(fibLoc)) > 0;++fibLoc){
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3].add(fibNums[(fibLoc - 2) % 3]);
}
//Return the proper number. The location counter is 1 off of the subscript
return fibNums[(fibLoc - 1) % 3];
}
//This function returns a list of all Fibonacci numbers <= goalNumber
public static List<Integer> getAllFib(int goalNumber){
return ArrayAlgorithms.longToInt(getAllFib((long) goalNumber));
}
public static List<Long> getAllFib(long goalNumber){
//Setup the variables
ArrayList<Long> fibNums = new ArrayList<>(); //A list to save the Fibonacci numbers
//If the number is <= 0 return an empty list
if(goalNumber <= 0){
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.add(1L);
fibNums.add(1L);
//Loop to generate the rest of the Fibonacci numbers
while(fibNums.get(fibNums.size() - 1) <= goalNumber){
fibNums.add(fibNums.get(fibNums.size() - 1) + fibNums.get(fibNums.size() - 2));
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.remove(fibNums.size() - 1);
return fibNums;
}
public static List<BigInteger> getAllFib(BigInteger goalNumber){
//Setup the variables
ArrayList<BigInteger> fibNums = new ArrayList<>(); //A list to save the Fibonacci numbers
//If the number is <= 0 return an empty list
if(goalNumber.compareTo(BigInteger.valueOf(0)) <= 0){
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.add(BigInteger.valueOf(1));
fibNums.add(BigInteger.valueOf(1));
//Loop to generate the rest of the Fibonacci numbers
while(fibNums.get(fibNums.size() - 1).compareTo(goalNumber) <= 0){
fibNums.add(fibNums.get(fibNums.size() - 1).add(fibNums.get(fibNums.size() - 2)));
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.remove(fibNums.size() - 1);
return fibNums;
}
//This function returns the factorial of the number passed to it
public static int factorial(int num) throws InvalidParameterException{
return (int)factorial((long)num);
}
public static long factorial(long num) throws InvalidParameterException{
long fact = 1L; //The value of the factorial
//If the number passed in is < 0 throw an exception
if(num < 0){
throw new InvalidParameterException(FACTORIAL_NEGATIVE_MESSAGE);
}
//Loop through every number up to and including num and add the product to the factorial
for(long cnt = 2L;cnt <= num;++cnt){
fact *= cnt;
}
return fact;
}
public static BigInteger factorial(BigInteger num) throws InvalidParameterException{
BigInteger fact = BigInteger.valueOf(1L);
//If the number passed in is < 0 throw an exception
if(num.compareTo(BigInteger.ZERO) < 0){
throw new InvalidParameterException(FACTORIAL_NEGATIVE_MESSAGE);
}
//Loop through every number up to and including num and add the product to the factorial
for(BigInteger cnt = BigInteger.TWO;cnt.compareTo(num) <= 0;cnt = cnt.add(BigInteger.ONE)){
fact = fact.multiply(cnt);
}
return fact;
}
//This function returns the GCD of the two numbers sent to it
public static int gcd(int num1, int num2){
return (int)gcd((long)num1, (long)num2);
}
public static long gcd(long num1, long num2){
while((num1 != 0) && (num2 != 0)){
if(num1 > num2){
num1 %= num2;
}
else{
num2 %= num1;
}
}
return num1 | num2;
}
public static BigInteger gcd(BigInteger num1, BigInteger num2){
while(!num1.equals(BigInteger.ZERO) && !num2.equals(BigInteger.ZERO)){
if(num1.compareTo(num2) > 0){
num1 = num1.mod(num2);
}
else{
num2 = num2.mod(num1);
}
}
return num1.or(num2);
}
//Converts a number to its binary equivalent
public static String toBin(long num){
//Convert the number to binary string
return Long.toBinaryString(num);
}
public static String toBin(BigInteger num){
//Conver the number to binary string
return num.toString(2);
}
}

View File

@@ -0,0 +1,153 @@
//JavaClasses/src/main/java/mattrixwv/Stopwatch.java
//Matthew Ellison (Mattrixwv)
// Created: 03-01-19
//Modified: 06-26-22
//This file contains a class that is used to time the execution time of other programs
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv;
import com.mattrixwv.exceptions.InvalidResult;
public class Stopwatch{
private Long startTime;
private Long stopTime;
//Constructor makes sure all values are set to defaults
public Stopwatch(){
//Make sure both values are null so it is easier to detect incorrect function calling order
startTime = null;
stopTime = null;
}
//Returns a long with the elapsed time in nanoseconds. Used by other functions to get the time before converting it to the correct resolution
private Long getTime(){
if(startTime == null){
return 0L;
}
else if(stopTime == null){
return System.nanoTime() - startTime;
}
else{
return stopTime - startTime;
}
}
//An enum that helps keep track of how many times the time has been reduced in the getStr function
private enum TIME_RESOLUTION{ NANOSECOND, MICROSECOND, MILLISECOND, SECOND, MINUTE, HOUR, ERROR }
//Simulates starting a stopwatch by saving the time
public void start(){
//Make sure the stop time is reset to 0
stopTime = null;
//Get the time as close to returning from the function as possible
startTime = System.nanoTime();
}
//Simulates stopping a stopwatch by saving the time
public void stop(){
//Set the stopTime as close to call time as possible
stopTime = System.nanoTime();
//If the startTime has not been set then reset stopTime
if(startTime == null){
stopTime = null;
}
}
//Resets all variables in the stopwatch
public void reset(){
//Make sure all variables are reset correctly
startTime = null;
stopTime = null;
}
//Returns the time in nanoseconds
public double getNano(){
return getTime().doubleValue();
}
//Returns the time in microseconds
public double getMicro(){
return getTime().doubleValue() / 1000D;
}
//Returns the time in milliseconds
public double getMilli(){
return getTime().doubleValue() / 1000000D;
}
//Returns the time in seconds
public double getSecond(){
return getTime().doubleValue() / 1000000000D;
}
//Returns the time in minutes
public double getMinute(){
return getTime().doubleValue() / 60000000000D;
}
//Returns the time in hours
public double getHour(){
return getTime().doubleValue() / 3600000000000D;
}
//Returns the time as a string at the 'best' resolution. (Goal is xxx.xxx)
public String getStr() throws InvalidResult{
//Get the current duration from time
return getStr(getTime().doubleValue());
}
public static String getStr(double nanoseconds) throws InvalidResult{
Double duration = nanoseconds;
//Reduce the number to the appropriate number of digits. (xxx.x).
//This loop works down to seconds
TIME_RESOLUTION resolution;
for(resolution = TIME_RESOLUTION.NANOSECOND;(resolution.ordinal() < TIME_RESOLUTION.SECOND.ordinal()) && (duration >= 1000);resolution = TIME_RESOLUTION.values()[resolution.ordinal() + 1]){
duration /= 1000;
}
//Check if the duration needs reduced to minutes
if((duration >= 120) && (resolution == TIME_RESOLUTION.SECOND)){
//Reduce to minutes
duration /= 60;
resolution = TIME_RESOLUTION.values()[resolution.ordinal() + 1];
//Check if the duration needs reduced to hours
if(duration >= 60){
//Reduce to hours
duration /= 60;
resolution = TIME_RESOLUTION.values()[resolution.ordinal() + 1];
}
}
//Turn the number into a string
int durationFraction = (int)Math.round(((duration % 1) * 1000));
String time = String.format("%d.%03d", duration.intValue(), durationFraction);
//Tack on the appropriate suffix for resolution
switch(resolution){
case NANOSECOND: time += " nanoseconds"; break;
case MICROSECOND: time += " microseconds"; break;
case MILLISECOND: time += " milliseconds"; break;
case SECOND: time += " seconds"; break;
case MINUTE: time += " minutes"; break;
case HOUR: time += " hours"; break;
case ERROR:
default: throw new InvalidResult("timeResolution was invalid");
}
//Return the string
return time;
}
@Override
public String toString(){
try{
return getStr();
}
catch(InvalidResult error){
return "There was an error in getStr(): " + error;
}
}
}

View File

@@ -0,0 +1,110 @@
//JavaClasses/src/main/java/mattrixwv/StringAlgorithms.java
//Matthew Ellison
// Created: 07-03-21
//Modified: 10-11-21
//This class contains algorithms for strings that I've found it useful to keep around
/*
Copyright (C) 2021 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class StringAlgorithms{
private StringAlgorithms(){}
//This is a function that creates all permutations of a string and returns a vector of those permutations.
public static List<String> getPermutations(String master){
return getPermutations(master, 0);
}
private static ArrayList<String> getPermutations(String master, int num){
ArrayList<String> perms = new ArrayList<>();
//Check if the number is out of bounds
if((num >= master.length()) || (num < 0)){
//Do nothing and return an empty arraylist
}
//If this is the last possible recurse just return the current string
else if(num == (master.length() - 1)){
perms.add(master);
}
//If there are more possible recurses, recurse with the current permutation
else{
ArrayList<String> temp = getPermutations(master, num + 1);
perms.addAll(temp);
//You need to swap the current letter with every possible letter after it
//The ones needed to swap before will happen automatically when the function recurses
for(int cnt = 1;(num + cnt) < master.length();++cnt){
master = swapString(master, num, (num + cnt));
temp = getPermutations(master, num + 1);
perms.addAll(temp);
master = swapString(master, num, (num + cnt));
}
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
if(num == 0){
Collections.sort(perms);
}
}
//Return the arraylist that was built
return perms;
}
private static String swapString(String str, int first, int second){
char[] tempStr = str.toCharArray();
char temp = tempStr[first];
tempStr[first] = tempStr[second];
tempStr[second] = temp;
return new String(tempStr);
}
//This function returns the number of times the character occurs in the string
public static long findNumOccurrence(String str, char c){
return str.chars().filter(ch -> ch == c).count();
}
//Returns true if the string passed in is a palindrome
public static boolean isPalindrome(String str){
String rev = new StringBuilder(str).reverse().toString();
return str.equals(rev);
}
//Returns true if the string passed to it is a pandigital
public static boolean isPandigital(String str, char bottom, char top){
//Return false if top < bottom
if(top < bottom){
return false;
}
//Return false if the wrong number of characters are in the string
if(str.length() != (top - bottom + 1)){
return false;
}
//Make sure that all of the needed characters are in the string exactly one time
for(char cnt = bottom;cnt <= top;++cnt){
if(findNumOccurrence(str, cnt) != 1){
return false;
}
}
//If the function has reached this part it has passed all of the falsifying tests
return true;
}
public static boolean isPandigital(String str){
return isPandigital(str, '1', '9');
}
}

View File

@@ -0,0 +1,67 @@
//JavaClasses/src/main/java/com/mattrixwv/Triple.java
//Mattrixwv
// Created: 08-20-22
//Modified: 08-20-22
//This class implements a triplet of variables
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv;
public class Triple<T, U, V>{
private T a;
private U b;
private V c;
public Triple(T a, U b, V c){
this.a = a;
this.b = b;
this.c = c;
}
public T getA(){
return a;
}
public U getB(){
return b;
}
public V getC(){
return c;
}
@Override
public boolean equals(Object o){
if(this == o){
return true;
}
else if(o instanceof Triple<?, ?, ?>){
Triple<?, ?, ?> rightSide = (Triple<?, ?, ?>)o;
return (a.equals(rightSide.a) && b.equals(rightSide.b) && c.equals(rightSide.c));
}
else{
return false;
}
}
@Override
public int hashCode(){
return a.hashCode() + b.hashCode() * c.hashCode();
}
@Override
public String toString(){
return "[" + a.toString() + ", " + b.toString() + ", " + c.toString() + "]";
}
}

View File

@@ -0,0 +1,17 @@
//JavaClasses/src/main/java/mattrixwv/Exceptions/InvalidResult.java
//Matthew Ellison
// Created: 08-24-20
//Modified: 08-24-20
//This is an exception for an invalid result out of one of my algorithms
package com.mattrixwv.exceptions;
public class InvalidResult extends Exception{
private static final long serialVersionUID = 1L;
public InvalidResult(){
super();
}
public InvalidResult(String msg){
super(msg);
}
}

View File

@@ -0,0 +1,57 @@
//JavaClasses/src/main/java/mattrixwv/HexagonalNumberGenerator.java
//Matthew Ellison
// Created: 08-20-22
//Modified: 08-20-22
//This class generates hexagonal numbers
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv.generators;
import java.util.Iterator;
import java.util.NoSuchElementException;
public class HexagonalNumberGenerator implements Iterator<Long>{
private Long num;
public HexagonalNumberGenerator(){
num = 1L;
}
@Override
public boolean hasNext(){
return (2 * num * num) > 0;
}
@Override
public Long next(){
Long newNum = ((2 * num * num) - num);
++num;
if(num > 0){
return newNum;
}
else{
throw new NoSuchElementException("Number overflow");
}
}
public static boolean isHexagonal(Long x){
Long n = Math.round((Math.sqrt(1 + (8 * x)) + 1) / 4);
return ((2 * n * n) - n) == x;
}
}

View File

@@ -0,0 +1,57 @@
//JavaClasses/src/main/java/com/mattrixwv/generators/PentagonalNumberGenerator.java
//Mattrixwv
// Created: 08-20-22
//Modified: 08-20-22
//This class generates pentagonal numbers
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv.generators;
import java.util.Iterator;
import java.util.NoSuchElementException;
public class PentagonalNumberGenerator implements Iterator<Long>{
private Long num;
public PentagonalNumberGenerator(){
num = 1L;
}
@Override
public boolean hasNext(){
return (3 * num * num) > 0;
}
@Override
public Long next(){
long newNum = ((3 * num * num) - num) / 2;
++num;
if(num > 0){
return newNum;
}
else{
throw new NoSuchElementException("Number overflow");
}
}
public static boolean isPentagonal(Long x){
Long n = Math.round((Math.sqrt(1 + (24 * x)) + 1) / 6);
return (((3 * n * n) - n) / 2) == x;
}
}

View File

@@ -0,0 +1,88 @@
//JavaClasses/src/main/java/mattrixwv/SieveOfEratosthenes.java
//Matthew Ellison
// Created: 06-30-21
//Modified: 06-25-22
//This class uses to Sieve of Eratosthenes to generate an infinite number of primes
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv.generators;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
public class SieveOfEratosthenes implements Iterator<Long>{
long possiblePrime;
private Map<Long, ArrayList<Long>> dict;
public SieveOfEratosthenes(){
dict = new HashMap<>();
possiblePrime = 2;
}
@Override
public boolean hasNext(){
return true;
}
@Override
public Long next(){
long prime;
//If this is the first run just return 2
if(possiblePrime <= 2){
prime = possiblePrime++;
return prime;
}
//Loop until you find a prime number
for(;dict.containsKey(possiblePrime);possiblePrime += 2){
if(possiblePrime < 0){
throw new NoSuchElementException("the next prime cannot be described by a long");
}
//Create the next entry for all entries in the map
for(long num : dict.get(possiblePrime)){
if(!dict.containsKey(possiblePrime + num + num)){
ArrayList<Long> tempArray = new ArrayList<>(Arrays.asList(num));
dict.put(possiblePrime + num + num, tempArray);
}
else{
dict.get(possiblePrime + num + num).add(num);
}
}
//Delete the current entry
dict.remove(possiblePrime);
}
//Save that the number is a prime
prime = possiblePrime;
//Add the next entry to the prime
if(!dict.containsKey(prime * 3)){
ArrayList<Long> tempArray = new ArrayList<>(Arrays.asList(prime));
dict.put(prime * 3, tempArray);
}
else{
dict.get(prime * 3).add(prime);
}
//Move on to the next possible prime
possiblePrime += 2;
return prime;
}
}

View File

@@ -0,0 +1,87 @@
//JavaClasses/src/main/java/mattrixwv/SieveOfEratosthenesBig.java
//Matthew Ellison
// Created: 06-30-21
//Modified: 06-25-22
//This class uses to Sieve of Eratosthenes to generate an infinite number of primes
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv.generators;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
public class SieveOfEratosthenesBig implements Iterator<BigInteger>{
BigInteger possiblePrime;
private Map<BigInteger, ArrayList<BigInteger>> dict;
public SieveOfEratosthenesBig(){
dict = new HashMap<>();
possiblePrime = BigInteger.TWO;
}
@Override
public boolean hasNext(){
return true;
}
@Override
public BigInteger next(){
BigInteger prime;
if(possiblePrime.compareTo(BigInteger.TWO) <= 0){
//Return 2 and move to 3
prime = possiblePrime;
possiblePrime = possiblePrime.add(BigInteger.ONE);
return prime;
}
//Loop until you find a prime number
for(;dict.containsKey(possiblePrime);possiblePrime = possiblePrime.add(BigInteger.TWO)){
//Create the next entry for all entries in the map
for(BigInteger num : dict.get(possiblePrime)){
BigInteger loc = possiblePrime.add(num).add(num);
if(!dict.containsKey(loc)){
ArrayList<BigInteger> tempArray = new ArrayList<>(Arrays.asList(num));
dict.put(loc, tempArray);
}
else{
dict.get(loc).add(num);
}
}
//Delete the current entry
dict.remove(possiblePrime);
}
//Save that the number is a prime
prime = possiblePrime;
BigInteger loc = prime.multiply(BigInteger.valueOf(3));
if(!dict.containsKey(loc)){
ArrayList<BigInteger> tempArray = new ArrayList<>(Arrays.asList(prime));
dict.put(loc, tempArray);
}
else{
dict.get(loc).add(prime);
}
//Move on to the next possible prime
possiblePrime = possiblePrime.add(BigInteger.TWO);
return prime;
}
}

View File

@@ -0,0 +1,57 @@
//JavaClasses/src/main/java/com/mattrixwv/generators/TriangularNumberGenerator.java
//Mattrixwv
// Created: 08-20-22
//Modified: 08-20-22
//This class generates triangular numbers
/*
Copyright (C) 2022 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package com.mattrixwv.generators;
import java.util.Iterator;
import java.util.NoSuchElementException;
public class TriangularNumberGenerator implements Iterator<Long>{
private Long num;
public TriangularNumberGenerator(){
num = 1L;
}
@Override
public boolean hasNext(){
return (num * num) > 0;
}
@Override
public Long next(){
Long newNum = ((num * num) + num) / 2;
++num;
if(num > 0){
return newNum;
}
else{
throw new NoSuchElementException("Number overflow");
}
}
public static boolean isTriangular(Long x){
Long n = Math.round((Math.sqrt(1 + (8 * x)) - 1) / 2);
return (((n * n) + n) / 2) == x;
}
}