mirror of
https://bitbucket.org/Mattrixwv/luaclasses.git
synced 2025-12-06 18:33:59 -05:00
422 lines
12 KiB
Lua
422 lines
12 KiB
Lua
--luaClasses/Algorithms.lua
|
|
--Matthew Ellison
|
|
-- Created: 02-04-19
|
|
--Modified: 06-29-21
|
|
--This is a file of algorithms that I have found it useful to keep around at all times
|
|
--[[
|
|
Copyright (C) 2021 Matthew Ellison
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
]]
|
|
|
|
|
|
--This function returns a list with all the primes numbers <= goalNumber
|
|
function getPrimes(goalNumber)
|
|
local primes = {}; --Holds the prime numbers
|
|
local foundFactor = false;
|
|
|
|
--If the number is 0 or negative return an empty table
|
|
if(goalNumber <= 1) then
|
|
return primes;
|
|
--Otherwise the number is at lease 2, therefore 2 should be added to the list
|
|
else
|
|
primes[#primes + 1] = 2;
|
|
end
|
|
|
|
--We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for possiblePrime=3,goalNumber,2 do
|
|
--Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
local primesCnt = 1;
|
|
--We can safely assume that there will be at least 1 element in the primes list because of 2 being added before the loop
|
|
local topPossibleFactor = math.ceil(math.sqrt(possiblePrime))
|
|
while(primes[primesCnt] <= topPossibleFactor) do
|
|
if((possiblePrime % primes[primesCnt]) == 0) then
|
|
foundFactor = true;
|
|
break;
|
|
else
|
|
primesCnt = primesCnt + 1;
|
|
end
|
|
--Check if the index has gone out of range
|
|
if(primesCnt >= #primes) then
|
|
break;
|
|
end
|
|
end
|
|
|
|
--If you didn't find a factor then the current number must be prime
|
|
if(not foundFactor) then
|
|
primes[#primes + 1] = possiblePrime;
|
|
else
|
|
foundFactor = false;
|
|
end
|
|
end
|
|
|
|
--Sort the array just to be neat and safe
|
|
table.sort(primes);
|
|
|
|
--Return the array
|
|
return primes;
|
|
end
|
|
|
|
--This function gets a specific number of primes
|
|
function getNumPrimes(numberOfPrimes)
|
|
local primes = {}; --Holds the prime numbers
|
|
local foundFactor = false;
|
|
|
|
--If the number is 0 or negative return an empty table
|
|
if(numberOfPrimes <= 1) then
|
|
return primes;
|
|
--Otherwise the number is at lease 2, therefore 2 should be added to the list
|
|
else
|
|
primes[#primes + 1] = 2;
|
|
end
|
|
|
|
--We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
local possiblePrime = 3;
|
|
while((#primes < numberOfPrimes) and (possiblePrime >= 0)) do
|
|
--Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
local primesCnt = 1;
|
|
--We can safely assume that there will be at least 1 element in the primes list because of 2 being added before the loop
|
|
local topPossibleFactor = math.ceil(math.sqrt(possiblePrime))
|
|
while(primes[primesCnt] <= topPossibleFactor) do
|
|
if((possiblePrime % primes[primesCnt]) == 0) then
|
|
foundFactor = true;
|
|
break;
|
|
else
|
|
primesCnt = primesCnt + 1;
|
|
end
|
|
--Check if the index has gone out of range
|
|
if(primesCnt >= #primes) then
|
|
break;
|
|
end
|
|
end
|
|
|
|
--If you didn't find a factor then the current number must be prime
|
|
if(not foundFactor) then
|
|
primes[#primes + 1] = possiblePrime;
|
|
else
|
|
foundFactor = false;
|
|
end
|
|
|
|
--Advance to the next possible prime number
|
|
possiblePrime = possiblePrime + 2;
|
|
end
|
|
|
|
--Sort the array just to be neat and safe
|
|
table.sort(primes);
|
|
|
|
--Return the array
|
|
return primes;
|
|
end
|
|
|
|
--This function determines whether the number passed into it is a prime
|
|
function isPrime(possiblePrime)
|
|
if(possiblePrime <= 3) then
|
|
return possiblePrime > 1;
|
|
elseif(((possiblePrime % 2) == 0) or ((possiblePrime % 3) == 0)) then
|
|
return false;
|
|
end
|
|
for cnt = 5, math.sqrt(possiblePrime), 6 do
|
|
if(((possiblePrime % cnt) == 0) or ((possiblePrime % (cnt + 2)) == 0)) then
|
|
return false;
|
|
end
|
|
end
|
|
return true;
|
|
end
|
|
|
|
--This is a function that returns all the factors of goalNumber
|
|
function getFactors(goalNumber)
|
|
local primes = getPrimes(math.ceil(math.sqrt(goalNumber))); --Get all the primes up the largest possible divisor
|
|
local factors = {}; --Holds all the factors
|
|
|
|
--You need to step through each prime and see if it is a factor of the number
|
|
local cnt = 1;
|
|
while((cnt <= #primes) and (goalNumber > 1)) do
|
|
--If the prime is a factor you need to add it to the factor list
|
|
if((goalNumber % primes[cnt]) == 0) then
|
|
factors[#factors + 1] = primes[cnt];
|
|
goalNumber = goalNumber / primes[cnt];
|
|
--Otherwise advance the location in the primes array you are looking at
|
|
--By not advancing if the primes is a factor you allow for multiple of the same prime number as a factor
|
|
else
|
|
cnt = cnt + 1
|
|
end
|
|
end
|
|
|
|
--If you didn't get any factors the number itself must be a prime number
|
|
if(#factors == 0) then
|
|
factors[#factors + 1] = goalNumber;
|
|
goalNumber = 1
|
|
end
|
|
|
|
--If your some reason teh goalNumber is not 1 print an error message
|
|
if(goalNumber > 1) then
|
|
print("There was an error in getFactors(). A leftover of " .. goalNumber);
|
|
end
|
|
|
|
--Return the list of factors
|
|
return factors;
|
|
end
|
|
|
|
--This is a function the returns all divisors of the number passed to it
|
|
function getDivisors(goalNumber)
|
|
local divisors = {};
|
|
--Start by checking that the number is positive
|
|
if(goalNumber <= 0) then
|
|
return divisors;
|
|
--If the number is 1 return just itself
|
|
elseif(goalNumber == 1) then
|
|
divisors[#divisors+1] = 1;
|
|
end
|
|
|
|
--Start at 3 and loop through all numbers < (goalNumber / 2) looking for a number that divides it evenly
|
|
local topPossibleDivisor = math.ceil(math.sqrt(goalNumber));
|
|
local possibleDivisor = 1;
|
|
while(possibleDivisor <= topPossibleDivisor) do
|
|
--If you find one add it and the number it creates to the list
|
|
if((goalNumber % possibleDivisor) == 0) then
|
|
divisors[#divisors+1] = possibleDivisor;
|
|
--Account for the possibility of sqrt(goalNumber) being a divisor
|
|
if(possibleDivisor ~= topPossibleDivisor) then
|
|
divisors[#divisors + 1] =(goalNumber / possibleDivisor);
|
|
end
|
|
--Take care of a few occations where a number was added twice
|
|
if(divisors[#divisors] == (possibleDivisor + 1)) then
|
|
possibleDivisor = possibleDivisor + 1;
|
|
end
|
|
end
|
|
possibleDivisor = possibleDivisor + 1;
|
|
end
|
|
--Sort the list before returning for neatness
|
|
table.sort(divisors);
|
|
--Return the list
|
|
return divisors;
|
|
end
|
|
|
|
--This function returns the numth Fibonacci number
|
|
function getFib(goalSubscript)
|
|
--Setup the variables
|
|
local fibNums = {1, 1, 0}; --A list to keep track of the Fibonacci Numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
|
|
|
--If the number is <= 0 return 0
|
|
if(goalSubscript <= 0) then
|
|
return 0;
|
|
end
|
|
|
|
--Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
local fibLoc = 2;
|
|
while(fibLoc <= goalSubscript) do
|
|
fibNums[(fibLoc % 3) + 1] = fibNums[((fibLoc - 1) % 3) + 1] + fibNums[((fibLoc - 2) % 3) + 1];
|
|
fibLoc = fibLoc + 1;
|
|
end
|
|
|
|
--Return the propper number
|
|
local answerLocation = ((fibLoc - 1) % 3);
|
|
if(answerLocation == 0) then
|
|
answerLocation = 3;
|
|
end
|
|
return fibNums[answerLocation];
|
|
end
|
|
|
|
function getLargeFib(goalSubscript)
|
|
local bigint = require "bigint";
|
|
--Setup the variables
|
|
local fibNums = {bigint.new(1), bigint.new(1), bigint.new(0)};
|
|
|
|
--If the number <= 0 return 0
|
|
if(goalSubscript <= 0) then
|
|
return bigint.new(0);
|
|
end
|
|
|
|
--Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
local fibLoc = 2;
|
|
while(fibLoc <= goalSubscript) do
|
|
fibNums[(fibLoc % 3) + 1] = bigint.add(fibNums[((fibLoc - 1) % 3) + 1], fibNums[((fibLoc - 2) % 3) + 1]);
|
|
fibLoc = fibLoc + 1;
|
|
end
|
|
|
|
--Return the propper number
|
|
local answerLocation = ((fibLoc - 1) % 3);
|
|
if(answerLocation == 0) then
|
|
answerLocation = 3;
|
|
end
|
|
return fibNums[answerLocation];
|
|
end
|
|
|
|
function getSum(ary)
|
|
local sum = 0; --Holds the sum of all elements. Start at 0 because num+1 = num
|
|
--Look through every element in the array and add the number to the running sum
|
|
for location = 1, #ary do
|
|
sum = sum + ary[location];
|
|
end
|
|
--Return the sum of all elements
|
|
return sum;
|
|
end
|
|
|
|
function getProd(ary)
|
|
if((ary == nil) or (#ary == 0)) then
|
|
return 0;
|
|
end
|
|
local prod = 1; --Holds the product of all elements. Start at 1 because num*1 = num
|
|
--Look through every element in the array and add the number to the running product
|
|
for location = 1, #ary do
|
|
prod = prod * ary[location];
|
|
end
|
|
--Return the product of all elements
|
|
return prod;
|
|
end
|
|
|
|
function getPermutations(master, num)
|
|
--If no num was given make it 0
|
|
local num = num or 1
|
|
local perms = {};
|
|
--Check if the number is out of bounds
|
|
if((num > string.len(master)) or (num <= 0)) then
|
|
--Do nothing and return an empty list
|
|
perms = {};
|
|
--If this is the last possible recurse just return the current string
|
|
elseif(num == string.len(master)) then
|
|
perms[#perms + 1] = master;
|
|
--If there are more possible recurses, recurse with the current permutations
|
|
else
|
|
local temp = getPermutations(master, num + 1);
|
|
--Add the elements of temp to perms
|
|
for loc = 1, #temp do
|
|
perms[#perms + 1] = temp[loc]
|
|
end
|
|
--You need to swap the current letter with every possible letter after it
|
|
--The ones needed to swap before will happen automatically when the function recurses
|
|
for cnt = 1, (string.len(master) - num) do
|
|
|
|
--Swap two elements
|
|
--Turn it into byte array so you can change values
|
|
local tempStr = {};
|
|
for loc = 1, #master do
|
|
tempStr[loc] = string.byte(master:sub(loc, loc));
|
|
end
|
|
|
|
--Swap the two elements
|
|
local tempChar = tempStr[num];
|
|
tempStr[num] = tempStr[num + cnt];
|
|
tempStr[num + cnt] = tempChar;
|
|
--Change it back to a string
|
|
master = "";
|
|
for loc = 1, #tempStr do
|
|
master = master .. string.char(tempStr[loc]);
|
|
end
|
|
|
|
--Get the permutations after swapping two elements
|
|
temp = getPermutations(master, num + 1);
|
|
--Add the elements of temp to perms
|
|
for loc = 1, #temp do
|
|
perms[#perms + 1] = temp[loc]
|
|
end
|
|
|
|
--Swap the elements back
|
|
--Turn it into byte array so you can change values
|
|
tempStr = {};
|
|
for loc = 1, #master do
|
|
tempStr[loc] = string.byte(master:sub(loc, loc));
|
|
end
|
|
--Swap the two elements
|
|
tempChar = tempStr[num];
|
|
tempStr[num] = tempStr[num + cnt];
|
|
tempStr[num + cnt] = tempChar;
|
|
--Change it back to a string
|
|
master = "";
|
|
for loc = 1, #tempStr do
|
|
master = master .. string.char(tempStr[loc]);
|
|
end
|
|
end
|
|
end
|
|
|
|
--The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
|
|
if(num == 1) then
|
|
table.sort(perms);
|
|
end
|
|
|
|
--Return the list
|
|
return perms;
|
|
end
|
|
|
|
function isFound(ary, key)
|
|
for cnt = 1, #ary do
|
|
if(ary[cnt] == key) then
|
|
return true;
|
|
end
|
|
end
|
|
return false;
|
|
end
|
|
|
|
function gcd(num1, num2)
|
|
while((num1 ~= 0) and (num2 ~= 0)) do
|
|
if(num1 > num2) then
|
|
num1 = num1 % num2;
|
|
else
|
|
num2 = num2 % num1;
|
|
end
|
|
end
|
|
return num1 | num2;
|
|
end
|
|
|
|
function factorial(num)
|
|
local fact = 1;
|
|
for cnt = 1, num do
|
|
fact = fact * cnt;
|
|
end
|
|
return fact;
|
|
end
|
|
|
|
--Returns true if the string passed in is a palindrome
|
|
function isPalindrome(str)
|
|
local rev = string.reverse(str);
|
|
if(str == rev) then
|
|
return true;
|
|
else
|
|
return false;
|
|
end
|
|
end
|
|
|
|
--Converts a number to its binary equivalent
|
|
function toBin(num)
|
|
--Convert the number to a binary string
|
|
local binNum = "";
|
|
while(num > 0) do
|
|
local rest = math.fmod(num, 2);
|
|
if(rest == 1) then
|
|
binNum = binNum .. "1";
|
|
else
|
|
binNum = binNum .. "0";
|
|
end
|
|
num = (num - rest) / 2;
|
|
end
|
|
binNum = string.reverse(binNum);
|
|
if(binNum == "") then
|
|
binNum = "0";
|
|
end
|
|
return binNum;
|
|
end
|
|
|
|
--Print a table
|
|
function printTable(ary)
|
|
local tableString = "[";
|
|
for cnt = 1, #ary do
|
|
tableString = tableString .. tostring(ary[cnt]);
|
|
if(cnt < #ary) then
|
|
tableString = tableString .. ", ";
|
|
end
|
|
end
|
|
tableString = tableString .. "]";
|
|
return tableString;
|
|
end
|