Added new files for Numerical Analysis

This commit is contained in:
2018-09-22 15:27:54 -04:00
parent 52997050f5
commit 3b669a2979
7 changed files with 197 additions and 0 deletions

35
Bisection.m Normal file
View File

@@ -0,0 +1,35 @@
function [xList,errorList] = Bisection (f, lowerValue, upperValue, allowError)
%
%Uses the bisection method to find the possible answers to the root of the function f
%
pkg load symbolic;
warning('off','OctSymPy:sym:rationalapprox');
%Setting necesary values for the function
cnt = 1;
maxItterations = 50;
errorValue = 1;
currentValue = 0.0;
%If the lower and upper bounds are mixed up swap them
if(double(subs(f,lowerValue)) > 0)
[lowerValue,upperValue] = swap(lowerValue, upperValue);
end
%Loop until the error is within bounds or the Maximum number of iterations is reached
while((abs(errorValue) > allowError) && (cnt < maxItterations))
currentValue = (lowerValue + upperValue)/ 2;
errorValue = double(subs(f,currentValue));
%Replace the correct value with the new value
%if error == 0 then the value has been found
if(errorValue < 0)
lowerValue = currentValue;
else
upperValue = currentValue;
end
xList(cnt) = currentValue;
errorList(cnt) = errorValue;
++cnt;
end
end

31
FalsePosition.m Normal file
View File

@@ -0,0 +1,31 @@
function [xList, errorList] = FalsePosition(f, p0, p1, errorAllowed)
%
%FalsePosition(f, p0, p1, errorAllowed)
%This function finds the root of a function using the method of False Position
%
pkg load symbolic;
warning('off','OctSymPy:sym:rationalapprox');
maxIt = 50;
cnt = 2;
q0 = double(subs(f,p0));
q1 = double(subs(f,p1));
p = 0;
q = 0;
currentError = errorAllowed + 1;
while((cnt <= maxIt) && (currentError >= errorAllowed))
p = p1 - (q1 * (p1 - p0))/(q1 - q0);
currentError = abs(p - p1);
%Add Values to lists
xList(end+1) = p;
errorList(end+1) = currentError;
++cnt;
q = double(subs(f,p));
if((q * q1) < 0)
p0 = p1;
q0 = q1;
end
p1 = p;
q1 = q;
end
end

44
Mullers.m Normal file
View File

@@ -0,0 +1,44 @@
function [xList, functionValueList] = Mullers(f, p0, p1, p2, errorAllowed)
%
%Mullers(f, p0, p1, p2, errorAllowed)
%This function finds the root of a function using Muller's Method
%
pkg load symbolic;
warning('off','OctSymPy:sym:rationalapprox');
h1 = p1 - p0;
h2 = p2 - p1;
s1 = (double(subs(f,p1)) - double(subs(f,p0))) / h1;
s2 = (double(subs(f,p2)) - double(subs(f,p2))) / h2;
d = (s2 - s1) / (h2 + h1);
cnt = 2;
maxIt = 50;
while(cnt < maxIt)
b = s2 + h2 * d;
D = (b^2 - (4 * double(subs(f,p2)) * d))^(1/2);
if(abs(b - D) < abs(b + D))
E = b + D;
else
E = b - D;
end
h = (02 * double(subs(f,p2)))/E;
p = p2 + h;
xList(end+1) = p;
functionValueList(end+1) = double(subs(f,p));
if(abs(h) < errorAllowed)
return;
else
p0 = p1;
p1 = p2;
p2 = p;
h1 = p1 - p0;
h2 = p2 - p1;
s1 = (double(subs(f,p1)) - double(subs(f,p0)))/h1;
s2 = (double(subs(f,p2)) - double(subs(f,p1)))/h2;
d = (s2 - s1)/(h2 + h1);
++cnt;
end
end
end

25
NewNewton.m Normal file
View File

@@ -0,0 +1,25 @@
function [xList, errorList] = NewNewton (f, startingValue, errorAllowed)
%
%NewNewton (f, startingValue, errorAllowed)
%This function computes the root of a function using the modified Newton's method
%
pkg load symbolic;
warning('off','OctSymPy:sym:rationalapprox');
oldAnswer = startingValue;
newAnswer = 0;
currentError = errorAllowed + 1;
cnt = 1;
maxIt = 50;
fp = diff(f);
fpp = diff(fp);
while((currentError >= errorAllowed) && (cnt < maxIt))
newAnswer = oldAnswer - ((double(subs(f,oldAnswer)) * double(subs(fp,oldAnswer)))/(double(subs(fp,oldAnswer))^2 - (double(subs(f,oldAnswer)) * double(subs(fpp,oldAnswer)))));
currentError = abs(newAnswer - oldAnswer);
xList(end+1) = newAnswer;
errorList(end+1) = currentError;
oldAnswer = newAnswer;
end
end

24
Newton.m Normal file
View File

@@ -0,0 +1,24 @@
function [xList,errorList] = Newton (f, startingValue, errorAllow)
%
%This function uses Newtons method to find a solution to the root of f
%
pkg load symbolic;
warning('off','OctSymPy:sym:rationalapprox');
maxIt = 50;
fp = diff(f);
oldAnswer = startingValue;
newAnswer = 0;
cnt = 1;
currentError = errorAllow + 1;
%Loop until the error becomes small enough or the maximum number of itterations is met
while((cnt < maxIt) && (currentError > errorAllow))
newAnswer = oldAnswer - (double(subs(f,oldAnswer))/double(subs(fp,oldAnswer)));
currentError = abs(newAnswer - oldAnswer);
xList(end+1) = newAnswer;
errorList(end+1) = currentError;
oldAnswer = newAnswer;
++cnt;
end
end

30
Secant.m Normal file
View File

@@ -0,0 +1,30 @@
function [xList, errorList] = Secant(f, p0, p1, errorAllowed)
%
%Secant(f, p0, p1, errorAllowed)
%This function find the root of a function using the Secant Method
%
pkg load symbolic;
warning('off','OctSymPy:sym:rationalapprox');
maxIt = 50;
cnt = 2;
q0 = double(subs(f,p0));
q1 = double(subs(f,p1));
currentError = errorAllowed + 1;
p = 0;
while((cnt <= maxIt) && (currentError >= errorAllowed))
p = p1 - (q1 * (p1 - p0))/(q1 - q0);
currentError = abs(p - p1);
%Add the x and error values to memory
xList(end+1) = p;
errorList(end+1) = currentError;
%Setup for the next run
++cnt;
p0 = p1;
q0 = q1;
p1 = p;
q1 = double(subs(f,p));
end
end

8
swap.m Normal file
View File

@@ -0,0 +1,8 @@
function [x,y] = swap(first, second)
%
%Swap the first and second values
%
x = second;
y = first;
end