mirror of
https://bitbucket.org/Mattrixwv/octavefunctions.git
synced 2025-12-06 18:53:57 -05:00
Added the first problems for ProjectEuler.net
This commit is contained in:
25
ProjectEuler/Problem1.m
Normal file
25
ProjectEuler/Problem1.m
Normal file
@@ -0,0 +1,25 @@
|
||||
%ProjectEuler/Problem1.m
|
||||
%This is a script to answer Problem 1 for Project Euler
|
||||
%What is the sum of all the multiples of 3 or 5 that are less than 1000
|
||||
|
||||
%Setup your variables
|
||||
fullSum = 0; %To hold the sum of all the numbers
|
||||
numbers = 0; %To hold all of the numbers
|
||||
counter = 0; %The number. It must stay below 1000
|
||||
|
||||
while(counter < 1000)
|
||||
%See if the number is a multiple of 3
|
||||
if(mod(counter, 3) == 0)
|
||||
numbers(end + 1) = counter;
|
||||
%See if the number is a multiple of 5
|
||||
elseif(mod(counter, 5) == 0)
|
||||
numbers(end + 1) = counter;
|
||||
end
|
||||
|
||||
%Increment the number
|
||||
++counter;
|
||||
end
|
||||
%When done this way it removes the possibility of duplicate numbers
|
||||
|
||||
fullSum = sum(numbers);
|
||||
fullSum
|
||||
24
ProjectEuler/Problem2.m
Normal file
24
ProjectEuler/Problem2.m
Normal file
@@ -0,0 +1,24 @@
|
||||
%ProjectEuler/Problem2.m
|
||||
%This is a script to answer Problem 2 for Project Euler
|
||||
%The sum of the even Fibonacci numbers less than 4,000,000
|
||||
|
||||
%Setup your Variables
|
||||
fib = [1, 1, 2]; %Holds the Fibonacci numbers
|
||||
currentFib = fib(end) + fib(end - 1); %The current Fibonacci number to be tested
|
||||
evenFib = [2]; %A subset of the even Fibonacci numbers
|
||||
finalSum = 0;
|
||||
|
||||
while(currentFib < 4000000)
|
||||
%Add the number to the list
|
||||
fib(end + 1) = currentFib;
|
||||
%If the number is even add it to the even list as well
|
||||
if(mod(currentFib, 2) == 0)
|
||||
evenFib(end + 1) = currentFib;
|
||||
end
|
||||
|
||||
%Set the next Fibonacci
|
||||
currentFib = fib(end) + fib(end - 1);
|
||||
end
|
||||
|
||||
finalSum = sum(evenFib);
|
||||
finalSum
|
||||
47
ProjectEuler/Problem3.m
Normal file
47
ProjectEuler/Problem3.m
Normal file
@@ -0,0 +1,47 @@
|
||||
%ProjectEuler/Problem3.m
|
||||
%This is a script to answer Problem 3 for Project Euler
|
||||
%The largest prime factor of 600851475143
|
||||
|
||||
%Setup your variables
|
||||
number = 600851475143; %The number we are trying to find the greatest prime factor of
|
||||
primeNums = []; %A list of prime numbers. Will include all prime numbers <= number
|
||||
factors = []; %For the list of factors of number
|
||||
tempNum = number; %Used to track the current value if all of the factors were taken out of number
|
||||
%number = 16; %Used for a test case
|
||||
|
||||
%Get the prime numbers up to sqrt(number). If it is not prime there must be a value <= sqrt
|
||||
primeNums = primes(sqrt(number));
|
||||
|
||||
%Setup the loop
|
||||
counter = 1;
|
||||
%Start with the lowest number and work your way up. When you reach a number > size(primeNums) you have found all of the factors
|
||||
while(counter <= size(primeNums)(2))
|
||||
|
||||
%Divide the number by the next prime number in the list
|
||||
answer = (tempNum/primeNums(counter));
|
||||
|
||||
%If it is a whole number add it to the factors
|
||||
if(mod(answer,1) == 0)
|
||||
factors(end + 1) = primeNums(counter);
|
||||
%Set tempNum so that it reflects number/factors
|
||||
tempNum = tempNum / primeNums(counter);
|
||||
%Keep the counter where it is in case a factor appears more than once
|
||||
%Get the new set of prime numbers
|
||||
primeNums = primes(sqrt(tempNum));
|
||||
else
|
||||
%If it was not an integer increment the counter
|
||||
++counter;
|
||||
end
|
||||
end
|
||||
%When the last number is not divisible by a prime number it must be a prime number
|
||||
factors(end + 1) = tempNum;
|
||||
|
||||
%Remove the variables
|
||||
clear counter;
|
||||
clear tempNum;
|
||||
clear answer;
|
||||
clear number;
|
||||
clear primeNums;
|
||||
|
||||
%Print the answer
|
||||
max(factors)
|
||||
Reference in New Issue
Block a user