mirror of
https://bitbucket.org/Mattrixwv/octavefunctions.git
synced 2025-12-06 18:53:57 -05:00
Added the first problems for ProjectEuler.net
This commit is contained in:
25
ProjectEuler/Problem1.m
Normal file
25
ProjectEuler/Problem1.m
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
%ProjectEuler/Problem1.m
|
||||||
|
%This is a script to answer Problem 1 for Project Euler
|
||||||
|
%What is the sum of all the multiples of 3 or 5 that are less than 1000
|
||||||
|
|
||||||
|
%Setup your variables
|
||||||
|
fullSum = 0; %To hold the sum of all the numbers
|
||||||
|
numbers = 0; %To hold all of the numbers
|
||||||
|
counter = 0; %The number. It must stay below 1000
|
||||||
|
|
||||||
|
while(counter < 1000)
|
||||||
|
%See if the number is a multiple of 3
|
||||||
|
if(mod(counter, 3) == 0)
|
||||||
|
numbers(end + 1) = counter;
|
||||||
|
%See if the number is a multiple of 5
|
||||||
|
elseif(mod(counter, 5) == 0)
|
||||||
|
numbers(end + 1) = counter;
|
||||||
|
end
|
||||||
|
|
||||||
|
%Increment the number
|
||||||
|
++counter;
|
||||||
|
end
|
||||||
|
%When done this way it removes the possibility of duplicate numbers
|
||||||
|
|
||||||
|
fullSum = sum(numbers);
|
||||||
|
fullSum
|
||||||
24
ProjectEuler/Problem2.m
Normal file
24
ProjectEuler/Problem2.m
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
%ProjectEuler/Problem2.m
|
||||||
|
%This is a script to answer Problem 2 for Project Euler
|
||||||
|
%The sum of the even Fibonacci numbers less than 4,000,000
|
||||||
|
|
||||||
|
%Setup your Variables
|
||||||
|
fib = [1, 1, 2]; %Holds the Fibonacci numbers
|
||||||
|
currentFib = fib(end) + fib(end - 1); %The current Fibonacci number to be tested
|
||||||
|
evenFib = [2]; %A subset of the even Fibonacci numbers
|
||||||
|
finalSum = 0;
|
||||||
|
|
||||||
|
while(currentFib < 4000000)
|
||||||
|
%Add the number to the list
|
||||||
|
fib(end + 1) = currentFib;
|
||||||
|
%If the number is even add it to the even list as well
|
||||||
|
if(mod(currentFib, 2) == 0)
|
||||||
|
evenFib(end + 1) = currentFib;
|
||||||
|
end
|
||||||
|
|
||||||
|
%Set the next Fibonacci
|
||||||
|
currentFib = fib(end) + fib(end - 1);
|
||||||
|
end
|
||||||
|
|
||||||
|
finalSum = sum(evenFib);
|
||||||
|
finalSum
|
||||||
47
ProjectEuler/Problem3.m
Normal file
47
ProjectEuler/Problem3.m
Normal file
@@ -0,0 +1,47 @@
|
|||||||
|
%ProjectEuler/Problem3.m
|
||||||
|
%This is a script to answer Problem 3 for Project Euler
|
||||||
|
%The largest prime factor of 600851475143
|
||||||
|
|
||||||
|
%Setup your variables
|
||||||
|
number = 600851475143; %The number we are trying to find the greatest prime factor of
|
||||||
|
primeNums = []; %A list of prime numbers. Will include all prime numbers <= number
|
||||||
|
factors = []; %For the list of factors of number
|
||||||
|
tempNum = number; %Used to track the current value if all of the factors were taken out of number
|
||||||
|
%number = 16; %Used for a test case
|
||||||
|
|
||||||
|
%Get the prime numbers up to sqrt(number). If it is not prime there must be a value <= sqrt
|
||||||
|
primeNums = primes(sqrt(number));
|
||||||
|
|
||||||
|
%Setup the loop
|
||||||
|
counter = 1;
|
||||||
|
%Start with the lowest number and work your way up. When you reach a number > size(primeNums) you have found all of the factors
|
||||||
|
while(counter <= size(primeNums)(2))
|
||||||
|
|
||||||
|
%Divide the number by the next prime number in the list
|
||||||
|
answer = (tempNum/primeNums(counter));
|
||||||
|
|
||||||
|
%If it is a whole number add it to the factors
|
||||||
|
if(mod(answer,1) == 0)
|
||||||
|
factors(end + 1) = primeNums(counter);
|
||||||
|
%Set tempNum so that it reflects number/factors
|
||||||
|
tempNum = tempNum / primeNums(counter);
|
||||||
|
%Keep the counter where it is in case a factor appears more than once
|
||||||
|
%Get the new set of prime numbers
|
||||||
|
primeNums = primes(sqrt(tempNum));
|
||||||
|
else
|
||||||
|
%If it was not an integer increment the counter
|
||||||
|
++counter;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
%When the last number is not divisible by a prime number it must be a prime number
|
||||||
|
factors(end + 1) = tempNum;
|
||||||
|
|
||||||
|
%Remove the variables
|
||||||
|
clear counter;
|
||||||
|
clear tempNum;
|
||||||
|
clear answer;
|
||||||
|
clear number;
|
||||||
|
clear primeNums;
|
||||||
|
|
||||||
|
%Print the answer
|
||||||
|
max(factors)
|
||||||
Reference in New Issue
Block a user