Files
OctaveFunctions/BezierExample.m

96 lines
2.5 KiB
Matlab

% Bezier example
% This goes in a file named BezierExample.m
close all
clear all
x_nodes = [];
y_nodes = [];
% Initialize figure window
figure
hold on
xlim([0 1])
ylim([0 1])
% Collect nodes
disp('Click several points on curve. Hit enter to exit')
index = 1;
while(true)
[x,y,button] = ginput(1);
if (isempty(x))
break
end
if (button ~= 1)
continue
end
% Add the new point and plot the new line segment
x_nodes(index) = x(1);
y_nodes(index) = y(1);
if (index > 1)
plot(x_nodes(index-1:index),y_nodes(index-1:index))
end
index = index + 1;
end
% Points have been entered. Build the collection of nodes and control
% points that define the curve
number_curves = length(x_nodes) - 1;
bezier_points = cell(number_curves,4);
for k = 1:number_curves
% Insert the nodes
bezier_points{k,1} = [x_nodes(k) y_nodes(k)];
bezier_points{k,4} = [x_nodes(k+1) y_nodes(k+1)];
% Create the control points
if (k == 1)
bezier_points{k,2} = [x_nodes(1) y_nodes(1)] + ([x_nodes(2) y_nodes(2)] - [x_nodes(1) y_nodes(1)])/3;
else
% Compute positions for control points. Arbitrarily, they will be
% collinear with the node in between and 1/3 of the way to the next
% node
vector_1 = [x_nodes(k) y_nodes(k)] - [x_nodes(k-1) y_nodes(k-1)];
length_1 = norm(vector_1);
vector_1 = vector_1/length_1;
vector_2 = [x_nodes(k) y_nodes(k)] - [x_nodes(k+1) y_nodes(k+1)];
length_2 = norm(vector_2);
vector_2 = vector_2/length_2;
vector_sum = vector_1 + vector_2;
n = vector_sum/norm(vector_sum);
% If vector_1 X vector_2 is negative, reverse the direction of n
if ((vector_1(1)*vector_2(2) - vector_2(1)*vector_1(2)) < 0)
n = -n;
end
n_p = [-n(2) n(1)];
bezier_points{k-1,3} = [x_nodes(k) y_nodes(k)] + n_p*length_1/3;
bezier_points{k,2} = [x_nodes(k) y_nodes(k)] - n_p*length_2/3;
if (k == (number_curves))
bezier_points{k,3} = [x_nodes(number_curves+1) y_nodes(number_curves+1)] + ...
([x_nodes(number_curves) y_nodes(number_curves)] - [x_nodes(number_curves+1) y_nodes(number_curves+1)])/3;
end
end
end
PlotBezier(bezier_points)