mirror of
https://bitbucket.org/Mattrixwv/rustclasses.git
synced 2025-12-07 02:43:59 -05:00
Add getNumPrimes
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
extern crate num;
|
||||
|
||||
|
||||
//
|
||||
//This function returns a list of all Fibonacci numbers <= goalNumber
|
||||
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
|
||||
//If the number is <= 0 return an empty list
|
||||
@@ -21,8 +21,6 @@ pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
||||
fibNums.remove(fibNums.len() - 1);
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//
|
||||
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
|
||||
//If the number is <= 0 return an empty list
|
||||
@@ -42,7 +40,7 @@ pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//Ths function returns all factors of goalNumber
|
||||
//This function returns all factors of goalNumber
|
||||
pub fn getFactors(mut goalNumber: i64) -> Vec<i64>{
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
let topPossiblePrime = (goalNumber as f64).sqrt().ceil() as i64;
|
||||
@@ -207,3 +205,101 @@ pub fn getPrimesBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
primes.sort();
|
||||
return primes;
|
||||
}
|
||||
|
||||
//This function gets a certain number of primes
|
||||
pub fn getNumPrimes(numberOfPrimes: i64) -> Vec<i64>{
|
||||
let mut primes = Vec::<i64>::new(); //Holds the prime numbers
|
||||
let mut foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= 0){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.push(2);
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all even numbers, because the cannot be prime
|
||||
let mut possiblePrime = 3;
|
||||
while((primes.len() as i64) < numberOfPrimes){
|
||||
//Check all current primes, up to sqrt)possiblePrime), to see if there is a divisor
|
||||
let topPossibleFactor = (possiblePrime as f64).sqrt().ceil() as i64;
|
||||
//We can safely assume that there will be at least 1 element in primes list because of 2 being added before this
|
||||
let mut primesCnt = 0;
|
||||
while(primes[primesCnt] <= topPossibleFactor){
|
||||
if((possiblePrime as i64 % primes[primesCnt]) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
primesCnt += 1;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.len()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.push(possiblePrime as i64);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
possiblePrime += 2;
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
primes.sort();
|
||||
return primes;
|
||||
}
|
||||
pub fn getNumPrimesBig(numberOfPrimes: num::BigInt) -> Vec<num::BigInt>{
|
||||
let mut primes = Vec::<num::BigInt>::new(); //Holds the prime numbers
|
||||
let mut foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= num::BigInt::from(1)){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.push(num::BigInt::from(2));
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
let mut possiblePrime = num::BigInt::from(3);
|
||||
while(numberOfPrimes > num::BigInt::from(primes.len())){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
let topPossibleFactor = ((&possiblePrime).sqrt() + num::BigInt::from(1));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
let mut primesCnt = 0;
|
||||
while(primes[primesCnt] <= topPossibleFactor){
|
||||
if((&possiblePrime % &primes[primesCnt]) == num::BigInt::from(0)){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
primesCnt += 1;
|
||||
}
|
||||
//Check if the index has gone out of bounds
|
||||
if(primesCnt >= primes.len()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.push(num::BigInt::new(possiblePrime.sign(), possiblePrime.to_u32_digits().1));
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
//Advance to the next number
|
||||
possiblePrime += 2;
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
primes.sort();
|
||||
return primes;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user