mirror of
https://bitbucket.org/Mattrixwv/rustclasses.git
synced 2026-02-04 03:32:29 -05:00
Add getNumPrimes
This commit is contained in:
@@ -1,7 +1,7 @@
|
|||||||
extern crate num;
|
extern crate num;
|
||||||
|
|
||||||
|
|
||||||
//
|
//This function returns a list of all Fibonacci numbers <= goalNumber
|
||||||
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
||||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
|
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
|
||||||
//If the number is <= 0 return an empty list
|
//If the number is <= 0 return an empty list
|
||||||
@@ -21,8 +21,6 @@ pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
|||||||
fibNums.remove(fibNums.len() - 1);
|
fibNums.remove(fibNums.len() - 1);
|
||||||
return fibNums;
|
return fibNums;
|
||||||
}
|
}
|
||||||
|
|
||||||
//
|
|
||||||
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
|
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
|
||||||
//If the number is <= 0 return an empty list
|
//If the number is <= 0 return an empty list
|
||||||
@@ -42,7 +40,7 @@ pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
|||||||
return fibNums;
|
return fibNums;
|
||||||
}
|
}
|
||||||
|
|
||||||
//Ths function returns all factors of goalNumber
|
//This function returns all factors of goalNumber
|
||||||
pub fn getFactors(mut goalNumber: i64) -> Vec<i64>{
|
pub fn getFactors(mut goalNumber: i64) -> Vec<i64>{
|
||||||
//You need to get all the primes that could be factors of this number so you can test them
|
//You need to get all the primes that could be factors of this number so you can test them
|
||||||
let topPossiblePrime = (goalNumber as f64).sqrt().ceil() as i64;
|
let topPossiblePrime = (goalNumber as f64).sqrt().ceil() as i64;
|
||||||
@@ -207,3 +205,101 @@ pub fn getPrimesBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
|||||||
primes.sort();
|
primes.sort();
|
||||||
return primes;
|
return primes;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//This function gets a certain number of primes
|
||||||
|
pub fn getNumPrimes(numberOfPrimes: i64) -> Vec<i64>{
|
||||||
|
let mut primes = Vec::<i64>::new(); //Holds the prime numbers
|
||||||
|
let mut foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||||
|
|
||||||
|
//If the number is 0 or negative return an empty list
|
||||||
|
if(numberOfPrimes <= 0){
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||||
|
else{
|
||||||
|
primes.push(2);
|
||||||
|
}
|
||||||
|
|
||||||
|
//We can now start at 3 and skip all even numbers, because the cannot be prime
|
||||||
|
let mut possiblePrime = 3;
|
||||||
|
while((primes.len() as i64) < numberOfPrimes){
|
||||||
|
//Check all current primes, up to sqrt)possiblePrime), to see if there is a divisor
|
||||||
|
let topPossibleFactor = (possiblePrime as f64).sqrt().ceil() as i64;
|
||||||
|
//We can safely assume that there will be at least 1 element in primes list because of 2 being added before this
|
||||||
|
let mut primesCnt = 0;
|
||||||
|
while(primes[primesCnt] <= topPossibleFactor){
|
||||||
|
if((possiblePrime as i64 % primes[primesCnt]) == 0){
|
||||||
|
foundFactor = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
primesCnt += 1;
|
||||||
|
}
|
||||||
|
//Check if the index has gone out of range
|
||||||
|
if(primesCnt >= primes.len()){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//If you didn't find a factor then the current number must be prime
|
||||||
|
if(!foundFactor){
|
||||||
|
primes.push(possiblePrime as i64);
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
foundFactor = false;
|
||||||
|
}
|
||||||
|
possiblePrime += 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Sort the list before returning it
|
||||||
|
primes.sort();
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
pub fn getNumPrimesBig(numberOfPrimes: num::BigInt) -> Vec<num::BigInt>{
|
||||||
|
let mut primes = Vec::<num::BigInt>::new(); //Holds the prime numbers
|
||||||
|
let mut foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||||
|
|
||||||
|
//If the number is 0 or negative return an empty list
|
||||||
|
if(numberOfPrimes <= num::BigInt::from(1)){
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||||
|
else{
|
||||||
|
primes.push(num::BigInt::from(2));
|
||||||
|
}
|
||||||
|
|
||||||
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||||
|
let mut possiblePrime = num::BigInt::from(3);
|
||||||
|
while(numberOfPrimes > num::BigInt::from(primes.len())){
|
||||||
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||||
|
let topPossibleFactor = ((&possiblePrime).sqrt() + num::BigInt::from(1));
|
||||||
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||||
|
let mut primesCnt = 0;
|
||||||
|
while(primes[primesCnt] <= topPossibleFactor){
|
||||||
|
if((&possiblePrime % &primes[primesCnt]) == num::BigInt::from(0)){
|
||||||
|
foundFactor = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
primesCnt += 1;
|
||||||
|
}
|
||||||
|
//Check if the index has gone out of bounds
|
||||||
|
if(primesCnt >= primes.len()){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//If you didn't find a factor then the current number must be prime
|
||||||
|
if(!foundFactor){
|
||||||
|
primes.push(num::BigInt::new(possiblePrime.sign(), possiblePrime.to_u32_digits().1));
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
foundFactor = false;
|
||||||
|
}
|
||||||
|
//Advance to the next number
|
||||||
|
possiblePrime += 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Sort the list before returning it
|
||||||
|
primes.sort();
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
|||||||
16
src/lib.rs
16
src/lib.rs
@@ -71,6 +71,22 @@ mod AlgorithmsTests{
|
|||||||
let answer3 = super::Algorithms::getFactorsBig(number3);
|
let answer3 = super::Algorithms::getFactorsBig(number3);
|
||||||
assert_eq!(correctAnswer3, answer3);
|
assert_eq!(correctAnswer3, answer3);
|
||||||
}
|
}
|
||||||
|
#[test]
|
||||||
|
fn testGetNumPrimes(){
|
||||||
|
//Test 1
|
||||||
|
let mut correctAnswer1 = Vec::<i64>::new();
|
||||||
|
correctAnswer1.extend_from_slice(&[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]);
|
||||||
|
let numPrimes1 = 25;
|
||||||
|
let answer1 = super::Algorithms::getNumPrimes(numPrimes1);
|
||||||
|
assert_eq!(correctAnswer1, answer1);
|
||||||
|
|
||||||
|
//Test 2
|
||||||
|
let mut correctAnswer2 = Vec::<num::BigInt>::new();
|
||||||
|
correctAnswer2.extend_from_slice(&[num::BigInt::from(2), num::BigInt::from(3), num::BigInt::from(5), num::BigInt::from(7), num::BigInt::from(11), num::BigInt::from(13), num::BigInt::from(17), num::BigInt::from(19), num::BigInt::from(23), num::BigInt::from(29), num::BigInt::from(31), num::BigInt::from(37), num::BigInt::from(41), num::BigInt::from(43), num::BigInt::from(47), num::BigInt::from(53), num::BigInt::from(59), num::BigInt::from(61), num::BigInt::from(67), num::BigInt::from(71), num::BigInt::from(73), num::BigInt::from(79), num::BigInt::from(83), num::BigInt::from(89), num::BigInt::from(97)]);
|
||||||
|
let numPrimes2 = num::BigInt::from(25);
|
||||||
|
let answer2 = super::Algorithms::getNumPrimesBig(numPrimes2);
|
||||||
|
assert_eq!(correctAnswer2, answer2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user