mirror of
https://bitbucket.org/Mattrixwv/rustclasses.git
synced 2025-12-07 02:43:59 -05:00
Added a few more functions
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
extern crate num;
|
||||
|
||||
|
||||
//
|
||||
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
|
||||
//If the number is <= 0 return an empty list
|
||||
@@ -21,6 +22,7 @@ pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//
|
||||
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
|
||||
//If the number is <= 0 return an empty list
|
||||
@@ -39,3 +41,169 @@ pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
fibNums.remove(fibNums.len() - 1);
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//Ths function returns all factors of goalNumber
|
||||
pub fn getFactors(mut goalNumber: i64) -> Vec<i64>{
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
let topPossiblePrime = (goalNumber as f64).sqrt().ceil() as i64;
|
||||
let primes = getPrimes(topPossiblePrime);
|
||||
let mut factors = Vec::<i64>::new();
|
||||
|
||||
//You need to step through each prime and see if it is a factor in the number
|
||||
let mut cnt = 0;
|
||||
while(cnt < primes.len()){
|
||||
//If the prime is a factor you need to add it to the factor list
|
||||
if((goalNumber % primes[cnt]) == 0){
|
||||
factors.push(primes[cnt]);
|
||||
goalNumber /= primes[cnt];
|
||||
}
|
||||
//Otherwise advance the location in primes you are looking at
|
||||
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||
else{
|
||||
cnt += 1;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't get any factors the number itself must be a prime
|
||||
if(factors.len() == 0){
|
||||
factors.push(goalNumber);
|
||||
goalNumber /= goalNumber;
|
||||
}
|
||||
|
||||
//TODO: If for some reason the goalNumber is not 1 throw an error
|
||||
if(goalNumber != 1){
|
||||
}
|
||||
|
||||
//Return the list of factors
|
||||
return factors;
|
||||
}
|
||||
pub fn getFactorsBig(mut goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
//You need to get all the rpimes that could be factors of this number so you can test them
|
||||
let topPossiblePrime = goalNumber.sqrt();
|
||||
let primes = getPrimesBig(topPossiblePrime);
|
||||
let mut factors = Vec::<num::BigInt>::new();
|
||||
|
||||
//You need to step through each prime and see if it is a factor in the number
|
||||
let mut cnt = 0;
|
||||
while(cnt < primes.len()){
|
||||
//If the prime is a factor you need to add it to the factor list
|
||||
if((&goalNumber % &primes[cnt]) == num::BigInt::from(0)){
|
||||
factors.push(num::BigInt::new(primes[cnt].sign(), primes[cnt].to_u32_digits().1));
|
||||
goalNumber /= &primes[cnt];
|
||||
}
|
||||
//Otherwise advance the location in primes you are looking at
|
||||
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||
else{
|
||||
cnt += 1;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't get any factors the number itself must be a prime
|
||||
if(factors.len() == 0){
|
||||
factors.push(goalNumber);
|
||||
goalNumber = num::BigInt::from(1);
|
||||
}
|
||||
|
||||
//TODO: If for some reason the goalNumber is not 1 throw an error
|
||||
if(goalNumber != num::BigInt::from(1)){
|
||||
}
|
||||
|
||||
//Return the list of factors
|
||||
return factors;
|
||||
}
|
||||
|
||||
//This function returns a list with all the prime numbers <= goalNumber
|
||||
pub fn getPrimes(goalNumber: i64) -> Vec<i64>{
|
||||
let mut primes = Vec::<i64>::new();
|
||||
let mut foundFactor = false;
|
||||
|
||||
//If the number is 1, 0, or negative return an empty list
|
||||
if(goalNumber <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.push(2);
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all even number, because they cannot be prime
|
||||
for possiblePrime in (3..=goalNumber).step_by(2){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
let topPossibleFactor = (possiblePrime as f64).sqrt().ceil();
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
let mut primesCnt = 0;
|
||||
while(primes[primesCnt] <= topPossibleFactor as i64){
|
||||
if((possiblePrime % primes[primesCnt]) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
primesCnt += 1;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.len()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.push(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
primes.sort();
|
||||
return primes;
|
||||
}
|
||||
pub fn getPrimesBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||
let mut primes = Vec::<num::BigInt>::new();
|
||||
let mut foundFactor = false;
|
||||
|
||||
//If the number is 1, 0, or negative return an empty list
|
||||
if(goalNumber <= num::BigInt::from(0)){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.push(num::BigInt::from(2));
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all even number, because they cannot be prime
|
||||
let mut possiblePrime = num::BigInt::from(3);
|
||||
while(possiblePrime <= goalNumber){
|
||||
//Check for all currentprimes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
let topPossibleFactor = possiblePrime.sqrt() + num::BigInt::from(1);
|
||||
//We can safely assume that there will be at least 2 element in the primes list because of 2 being added before this
|
||||
let mut primesCnt = 0;
|
||||
while(primes[primesCnt] <= topPossibleFactor){
|
||||
if((&possiblePrime % &primes[primesCnt]) == num::BigInt::from(0)){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
else{
|
||||
primesCnt += 1;
|
||||
}
|
||||
//Check if the index has gone out of range
|
||||
if(primesCnt >= primes.len()){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.push(num::BigInt::new(possiblePrime.sign(), possiblePrime.to_u32_digits().1));
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
possiblePrime += num::BigInt::from(2);
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
primes.sort();
|
||||
return primes;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user