mirror of
https://bitbucket.org/Mattrixwv/rustclasses.git
synced 2025-12-06 18:34:00 -05:00
Added a few more functions
This commit is contained in:
@@ -1,6 +1,7 @@
|
|||||||
extern crate num;
|
extern crate num;
|
||||||
|
|
||||||
|
|
||||||
|
//
|
||||||
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
||||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
|
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
|
||||||
//If the number is <= 0 return an empty list
|
//If the number is <= 0 return an empty list
|
||||||
@@ -21,6 +22,7 @@ pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
|
|||||||
return fibNums;
|
return fibNums;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//
|
||||||
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||||
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
|
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
|
||||||
//If the number is <= 0 return an empty list
|
//If the number is <= 0 return an empty list
|
||||||
@@ -39,3 +41,169 @@ pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
|||||||
fibNums.remove(fibNums.len() - 1);
|
fibNums.remove(fibNums.len() - 1);
|
||||||
return fibNums;
|
return fibNums;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Ths function returns all factors of goalNumber
|
||||||
|
pub fn getFactors(mut goalNumber: i64) -> Vec<i64>{
|
||||||
|
//You need to get all the primes that could be factors of this number so you can test them
|
||||||
|
let topPossiblePrime = (goalNumber as f64).sqrt().ceil() as i64;
|
||||||
|
let primes = getPrimes(topPossiblePrime);
|
||||||
|
let mut factors = Vec::<i64>::new();
|
||||||
|
|
||||||
|
//You need to step through each prime and see if it is a factor in the number
|
||||||
|
let mut cnt = 0;
|
||||||
|
while(cnt < primes.len()){
|
||||||
|
//If the prime is a factor you need to add it to the factor list
|
||||||
|
if((goalNumber % primes[cnt]) == 0){
|
||||||
|
factors.push(primes[cnt]);
|
||||||
|
goalNumber /= primes[cnt];
|
||||||
|
}
|
||||||
|
//Otherwise advance the location in primes you are looking at
|
||||||
|
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||||
|
else{
|
||||||
|
cnt += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//If you didn't get any factors the number itself must be a prime
|
||||||
|
if(factors.len() == 0){
|
||||||
|
factors.push(goalNumber);
|
||||||
|
goalNumber /= goalNumber;
|
||||||
|
}
|
||||||
|
|
||||||
|
//TODO: If for some reason the goalNumber is not 1 throw an error
|
||||||
|
if(goalNumber != 1){
|
||||||
|
}
|
||||||
|
|
||||||
|
//Return the list of factors
|
||||||
|
return factors;
|
||||||
|
}
|
||||||
|
pub fn getFactorsBig(mut goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||||
|
//You need to get all the rpimes that could be factors of this number so you can test them
|
||||||
|
let topPossiblePrime = goalNumber.sqrt();
|
||||||
|
let primes = getPrimesBig(topPossiblePrime);
|
||||||
|
let mut factors = Vec::<num::BigInt>::new();
|
||||||
|
|
||||||
|
//You need to step through each prime and see if it is a factor in the number
|
||||||
|
let mut cnt = 0;
|
||||||
|
while(cnt < primes.len()){
|
||||||
|
//If the prime is a factor you need to add it to the factor list
|
||||||
|
if((&goalNumber % &primes[cnt]) == num::BigInt::from(0)){
|
||||||
|
factors.push(num::BigInt::new(primes[cnt].sign(), primes[cnt].to_u32_digits().1));
|
||||||
|
goalNumber /= &primes[cnt];
|
||||||
|
}
|
||||||
|
//Otherwise advance the location in primes you are looking at
|
||||||
|
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||||
|
else{
|
||||||
|
cnt += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//If you didn't get any factors the number itself must be a prime
|
||||||
|
if(factors.len() == 0){
|
||||||
|
factors.push(goalNumber);
|
||||||
|
goalNumber = num::BigInt::from(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
//TODO: If for some reason the goalNumber is not 1 throw an error
|
||||||
|
if(goalNumber != num::BigInt::from(1)){
|
||||||
|
}
|
||||||
|
|
||||||
|
//Return the list of factors
|
||||||
|
return factors;
|
||||||
|
}
|
||||||
|
|
||||||
|
//This function returns a list with all the prime numbers <= goalNumber
|
||||||
|
pub fn getPrimes(goalNumber: i64) -> Vec<i64>{
|
||||||
|
let mut primes = Vec::<i64>::new();
|
||||||
|
let mut foundFactor = false;
|
||||||
|
|
||||||
|
//If the number is 1, 0, or negative return an empty list
|
||||||
|
if(goalNumber <= 1){
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||||
|
else{
|
||||||
|
primes.push(2);
|
||||||
|
}
|
||||||
|
|
||||||
|
//We can now start at 3 and skip all even number, because they cannot be prime
|
||||||
|
for possiblePrime in (3..=goalNumber).step_by(2){
|
||||||
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||||
|
let topPossibleFactor = (possiblePrime as f64).sqrt().ceil();
|
||||||
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||||
|
let mut primesCnt = 0;
|
||||||
|
while(primes[primesCnt] <= topPossibleFactor as i64){
|
||||||
|
if((possiblePrime % primes[primesCnt]) == 0){
|
||||||
|
foundFactor = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
primesCnt += 1;
|
||||||
|
}
|
||||||
|
//Check if the index has gone out of range
|
||||||
|
if(primesCnt >= primes.len()){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//If you didn't find a factor then the current number must be prime
|
||||||
|
if(!foundFactor){
|
||||||
|
primes.push(possiblePrime);
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
foundFactor = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Sort the list before returning it
|
||||||
|
primes.sort();
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
pub fn getPrimesBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
|
||||||
|
let mut primes = Vec::<num::BigInt>::new();
|
||||||
|
let mut foundFactor = false;
|
||||||
|
|
||||||
|
//If the number is 1, 0, or negative return an empty list
|
||||||
|
if(goalNumber <= num::BigInt::from(0)){
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||||
|
else{
|
||||||
|
primes.push(num::BigInt::from(2));
|
||||||
|
}
|
||||||
|
|
||||||
|
//We can now start at 3 and skip all even number, because they cannot be prime
|
||||||
|
let mut possiblePrime = num::BigInt::from(3);
|
||||||
|
while(possiblePrime <= goalNumber){
|
||||||
|
//Check for all currentprimes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||||
|
let topPossibleFactor = possiblePrime.sqrt() + num::BigInt::from(1);
|
||||||
|
//We can safely assume that there will be at least 2 element in the primes list because of 2 being added before this
|
||||||
|
let mut primesCnt = 0;
|
||||||
|
while(primes[primesCnt] <= topPossibleFactor){
|
||||||
|
if((&possiblePrime % &primes[primesCnt]) == num::BigInt::from(0)){
|
||||||
|
foundFactor = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
primesCnt += 1;
|
||||||
|
}
|
||||||
|
//Check if the index has gone out of range
|
||||||
|
if(primesCnt >= primes.len()){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//If you didn't find a factor then the current number must be prime
|
||||||
|
if(!foundFactor){
|
||||||
|
primes.push(num::BigInt::new(possiblePrime.sign(), possiblePrime.to_u32_digits().1));
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
foundFactor = false;
|
||||||
|
}
|
||||||
|
possiblePrime += num::BigInt::from(2);
|
||||||
|
}
|
||||||
|
|
||||||
|
//Sort the list before returning it
|
||||||
|
primes.sort();
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
|||||||
36
src/lib.rs
36
src/lib.rs
@@ -68,4 +68,40 @@ mod AlgorithmsTests{
|
|||||||
let answerBig = super::Algorithms::getAllFibBig(highestNumberBig);
|
let answerBig = super::Algorithms::getAllFibBig(highestNumberBig);
|
||||||
assert_eq!(correctAnswerBig, answerBig);
|
assert_eq!(correctAnswerBig, answerBig);
|
||||||
}
|
}
|
||||||
|
#[test]
|
||||||
|
fn testGetPrimes(){
|
||||||
|
//Test1
|
||||||
|
let mut correctAnswer1 = Vec::<i64>::new();
|
||||||
|
correctAnswer1.extend_from_slice(&[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]);
|
||||||
|
let topNum1 = 100;
|
||||||
|
let answer1 = super::Algorithms::getPrimes(topNum1);
|
||||||
|
assert_eq!(correctAnswer1, answer1);
|
||||||
|
//Test2
|
||||||
|
let mut correctAnswer2 = Vec::<num::BigInt>::new();
|
||||||
|
correctAnswer2.extend_from_slice(&[num::BigInt::from(2), num::BigInt::from(3), num::BigInt::from(5), num::BigInt::from(7), num::BigInt::from(11), num::BigInt::from(13), num::BigInt::from(17), num::BigInt::from(19), num::BigInt::from(23), num::BigInt::from(29), num::BigInt::from(31), num::BigInt::from(37), num::BigInt::from(41), num::BigInt::from(43), num::BigInt::from(47), num::BigInt::from(53), num::BigInt::from(59), num::BigInt::from(61), num::BigInt::from(67), num::BigInt::from(71), num::BigInt::from(73), num::BigInt::from(79), num::BigInt::from(83), num::BigInt::from(89), num::BigInt::from(97)]);
|
||||||
|
let topNum2 = num::BigInt::from(100);
|
||||||
|
let answer2 = super::Algorithms::getPrimesBig(topNum2);
|
||||||
|
assert_eq!(correctAnswer2, answer2);
|
||||||
|
}
|
||||||
|
#[test]
|
||||||
|
fn testGetFactors(){
|
||||||
|
//Test1
|
||||||
|
let mut correctAnswer1 = Vec::<i64>::new();
|
||||||
|
correctAnswer1.extend_from_slice(&[2, 2, 5, 5]);
|
||||||
|
let number1 = 100;
|
||||||
|
let answer1 = super::Algorithms::getFactors(number1);
|
||||||
|
assert_eq!(correctAnswer1, answer1);
|
||||||
|
//Test2
|
||||||
|
let mut correctAnswer2 = Vec::<i64>::new();
|
||||||
|
correctAnswer2.extend_from_slice(&[2, 7, 7]);
|
||||||
|
let number2 = 98;
|
||||||
|
let answer2 = super::Algorithms::getFactors(number2);
|
||||||
|
assert_eq!(correctAnswer2, answer2);
|
||||||
|
//Test3
|
||||||
|
let mut correctAnswer3 = Vec::<num::BigInt>::new();
|
||||||
|
correctAnswer3.extend_from_slice(&[num::BigInt::from(2), num::BigInt::from(2), num::BigInt::from(5), num::BigInt::from(5)]);
|
||||||
|
let number3 = num::BigInt::from(100);
|
||||||
|
let answer3 = super::Algorithms::getFactorsBig(number3);
|
||||||
|
assert_eq!(correctAnswer3, answer3);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user