Files
RustClasses/src/Algorithms.rs

490 lines
16 KiB
Rust

extern crate num;
//This function returns a list of all Fibonacci numbers <= goalNumber
pub fn getAllFib(goalNumber: u64) -> Vec<u64>{
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers
//If the number is <= 0 return an empty list
if(goalNumber <= 0){
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.push(1);
fibNums.push(1);
//Loop to generate the rest of the Fibonacci numbers
while(fibNums[fibNums.len() - 1] <= goalNumber){
fibNums.push(fibNums[fibNums.len() - 1] + fibNums[fibNums.len() - 2]);
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.remove(fibNums.len() - 1);
return fibNums;
}
pub fn getAllFibBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
let mut fibNums = Vec::new(); //A list to save the Fibonacci numbers in
//If the number is <= 0 return an empty list
if(goalNumber <= num::BigInt::from(0)){
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.push(num::BigInt::from(1));
fibNums.push(num::BigInt::from(1));
while(fibNums[fibNums.len() - 1] <= goalNumber){
fibNums.push(&fibNums[fibNums.len() - 1] + &fibNums[fibNums.len() - 2]);
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.remove(fibNums.len() - 1);
return fibNums;
}
//This function returns all the divisors of goalSubscript
pub fn getFib(goalSubscript: i64) -> i64{
//Setup the variables
let mut fibNums = [1, 1, 0];
//If the number is <= 0 return 0
if(goalSubscript <= 0){
return 0;
}
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
let mut fibLoc = 2;
while(fibLoc < goalSubscript){
fibNums[(fibLoc % 3) as usize] = fibNums[((fibLoc - 1) % 3) as usize] + fibNums[((fibLoc - 2) % 3) as usize];
fibLoc += 1;
}
//Return the proper number. The location counter is 1 off of the subscript
return fibNums[((fibLoc - 1) % 3) as usize];
}
pub fn getFibBig(goalSubscript: num::BigInt) -> num::BigInt{
//Setup the variables
let mut fibNums = [num::BigInt::from(1), num::BigInt::from(1), num::BigInt::from(0)];
//If the number is <= 0 return 0
if(goalSubscript <= num::BigInt::from(0)){
return num::BigInt::from(0);
}
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
let mut fibLoc = 2;
while(num::BigInt::from(fibLoc) < goalSubscript){
fibNums[(fibLoc % 3) as usize] = &fibNums[((fibLoc - 1) % 3) as usize] + &fibNums[((fibLoc - 2) % 3) as usize];
fibLoc += 1;
}
//Return the proper number. The location counter is 1 off of the subscript
let temp = &fibNums[((fibLoc - 1) % 3) as usize];
return num::BigInt::new(temp.to_u32_digits().0, temp.to_u32_digits().1);
}
//This function returns all factors of goalNumber
pub fn getFactors(mut goalNumber: i64) -> Vec<i64>{
//You need to get all the primes that could be factors of this number so you can test them
let topPossiblePrime = (goalNumber as f64).sqrt().ceil() as i64;
let primes = getPrimes(topPossiblePrime);
let mut factors = Vec::<i64>::new();
//You need to step through each prime and see if it is a factor in the number
let mut cnt = 0;
while(cnt < primes.len()){
//If the prime is a factor you need to add it to the factor list
if((goalNumber % primes[cnt]) == 0){
factors.push(primes[cnt]);
goalNumber /= primes[cnt];
}
//Otherwise advance the location in primes you are looking at
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
else{
cnt += 1;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.len() == 0){
factors.push(goalNumber);
goalNumber /= goalNumber;
}
//TODO: If for some reason the goalNumber is not 1 throw an error
if(goalNumber != 1){
}
//Return the list of factors
return factors;
}
pub fn getFactorsBig(mut goalNumber: num::BigInt) -> Vec<num::BigInt>{
//You need to get all the rpimes that could be factors of this number so you can test them
let topPossiblePrime = goalNumber.sqrt();
let primes = getPrimesBig(topPossiblePrime);
let mut factors = Vec::<num::BigInt>::new();
//You need to step through each prime and see if it is a factor in the number
let mut cnt = 0;
while(cnt < primes.len()){
//If the prime is a factor you need to add it to the factor list
if((&goalNumber % &primes[cnt]) == num::BigInt::from(0)){
factors.push(num::BigInt::new(primes[cnt].sign(), primes[cnt].to_u32_digits().1));
goalNumber /= &primes[cnt];
}
//Otherwise advance the location in primes you are looking at
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
else{
cnt += 1;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.len() == 0){
factors.push(goalNumber);
goalNumber = num::BigInt::from(1);
}
//TODO: If for some reason the goalNumber is not 1 throw an error
if(goalNumber != num::BigInt::from(1)){
}
//Return the list of factors
return factors;
}
//This function returns a list with all the prime numbers <= goalNumber
pub fn getPrimes(goalNumber: i64) -> Vec<i64>{
let mut primes = Vec::<i64>::new();
let mut foundFactor = false;
//If the number is 1, 0, or negative return an empty list
if(goalNumber <= 1){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2);
}
//We can now start at 3 and skip all even number, because they cannot be prime
for possiblePrime in (3..=goalNumber).step_by(2){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor = (possiblePrime as f64).sqrt().ceil();
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
let mut primesCnt = 0;
while(primes[primesCnt] <= topPossibleFactor as i64){
if((possiblePrime % primes[primesCnt]) == 0){
foundFactor = true;
break;
}
else{
primesCnt += 1;
}
//Check if the index has gone out of range
if(primesCnt >= primes.len()){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes.sort();
return primes;
}
pub fn getPrimesBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
let mut primes = Vec::<num::BigInt>::new();
let mut foundFactor = false;
//If the number is 1, 0, or negative return an empty list
if(goalNumber <= num::BigInt::from(0)){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(num::BigInt::from(2));
}
//We can now start at 3 and skip all even number, because they cannot be prime
let mut possiblePrime = num::BigInt::from(3);
while(possiblePrime <= goalNumber){
//Check for all currentprimes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor = possiblePrime.sqrt() + num::BigInt::from(1);
//We can safely assume that there will be at least 2 element in the primes list because of 2 being added before this
let mut primesCnt = 0;
while(primes[primesCnt] <= topPossibleFactor){
if((&possiblePrime % &primes[primesCnt]) == num::BigInt::from(0)){
foundFactor = true;
break;
}
else{
primesCnt += 1;
}
//Check if the index has gone out of range
if(primesCnt >= primes.len()){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(num::BigInt::new(possiblePrime.sign(), possiblePrime.to_u32_digits().1));
}
else{
foundFactor = false;
}
possiblePrime += num::BigInt::from(2);
}
//Sort the list before returning it
primes.sort();
return primes;
}
//This function gets a certain number of primes
pub fn getNumPrimes(numberOfPrimes: i64) -> Vec<i64>{
let mut primes = Vec::<i64>::new(); //Holds the prime numbers
let mut foundFactor = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or negative return an empty list
if(numberOfPrimes <= 0){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2);
}
//We can now start at 3 and skip all even numbers, because the cannot be prime
let mut possiblePrime = 3;
while((primes.len() as i64) < numberOfPrimes){
//Check all current primes, up to sqrt)possiblePrime), to see if there is a divisor
let topPossibleFactor = (possiblePrime as f64).sqrt().ceil() as i64;
//We can safely assume that there will be at least 1 element in primes list because of 2 being added before this
let mut primesCnt = 0;
while(primes[primesCnt] <= topPossibleFactor){
if((possiblePrime as i64 % primes[primesCnt]) == 0){
foundFactor = true;
break;
}
else{
primesCnt += 1;
}
//Check if the index has gone out of range
if(primesCnt >= primes.len()){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime as i64);
}
else{
foundFactor = false;
}
possiblePrime += 2;
}
//Sort the list before returning it
primes.sort();
return primes;
}
pub fn getNumPrimesBig(numberOfPrimes: num::BigInt) -> Vec<num::BigInt>{
let mut primes = Vec::<num::BigInt>::new(); //Holds the prime numbers
let mut foundFactor = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or negative return an empty list
if(numberOfPrimes <= num::BigInt::from(1)){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(num::BigInt::from(2));
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
let mut possiblePrime = num::BigInt::from(3);
while(numberOfPrimes > num::BigInt::from(primes.len())){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor = ((&possiblePrime).sqrt() + num::BigInt::from(1));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
let mut primesCnt = 0;
while(primes[primesCnt] <= topPossibleFactor){
if((&possiblePrime % &primes[primesCnt]) == num::BigInt::from(0)){
foundFactor = true;
break;
}
else{
primesCnt += 1;
}
//Check if the index has gone out of bounds
if(primesCnt >= primes.len()){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(num::BigInt::new(possiblePrime.sign(), possiblePrime.to_u32_digits().1));
}
else{
foundFactor = false;
}
//Advance to the next number
possiblePrime += 2;
}
//Sort the list before returning it
primes.sort();
return primes;
}
//This function returns all the divisors of goalNumber
pub fn getDivisors(goalNumber: i64) -> Vec<i64>{
let mut divisors = Vec::<i64>::new();
//Start by checking that the number is positive
if(goalNumber <= 0){
return divisors;
}
//If the number is 1 return just itself
else if(goalNumber == 1){
divisors.push(1);
return divisors;
}
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
let topPossibleDivisor = (goalNumber as f64).sqrt().ceil() as i64;
let mut possibleDivisor = 1i64;
while(possibleDivisor <= topPossibleDivisor){
//If you find one add it and the number it creates to the list
if((goalNumber % possibleDivisor) == 0){
divisors.push(possibleDivisor);
//Account for the possibility of sqrt(goalNumber) being a divisor
if(possibleDivisor != topPossibleDivisor){
divisors.push(goalNumber / possibleDivisor);
}
//Take care of a few occations where a number was added twice
if(divisors.last().unwrap() == &(possibleDivisor + 1)){
possibleDivisor += 1;
}
}
possibleDivisor += 1;
}
//Sort the list before returning it (for neatness)
divisors.sort();
return divisors;
}
pub fn getDivisorsBig(goalNumber: num::BigInt) -> Vec<num::BigInt>{
let mut divisors = Vec::<num::BigInt>::new();
//Start by checking that he number is positive
if(goalNumber <= num::BigInt::from(0)){
return divisors;
}
//If the number is 1 return just itself
else if(goalNumber == num::BigInt::from(1)){
divisors.push(num::BigInt::from(1));
return divisors;
}
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
let topPossibleDivisor = goalNumber.sqrt();
let mut possibleDivisor = num::BigInt::from(1);
while(&possibleDivisor <= &topPossibleDivisor){
//If you find one add it and the number it creates to the list
if((&goalNumber % &possibleDivisor) == num::BigInt::from(0)){
divisors.push(num::BigInt::new(possibleDivisor.sign(), possibleDivisor.to_u32_digits().1));
//Account for the possibility of sqrt(goalNumber) being a divisor
if(&possibleDivisor != &topPossibleDivisor){
divisors.push(num::BigInt::new((&goalNumber / &possibleDivisor).sign(), (&goalNumber / &possibleDivisor).to_u32_digits().1));
}
//Take care of a few occations where the number was added twice
if(divisors.last().unwrap() == &(&possibleDivisor + num::BigInt::from(1))){
possibleDivisor += num::BigInt::from(1);
}
}
possibleDivisor += 1;
}
//Sort the list before returning it (for neatness)
divisors.sort();
return divisors;
}
//This is a function that creates all permutations of a string and returns a vector of those permutations.
pub fn getPermutations(master: String) -> Vec::<String>{
return getPermutationsFull(master, 0);
}
fn getPermutationsFull(masterOrg: String, num: i32) -> Vec::<String>{
let mut master = masterOrg;
let mut perms = Vec::<String>::new();
//Check if the number is out of bounds
if((num >= master.len() as i32) || (num < 0)){
//Do nothing and return an empty array
}
//If this is the last possible recurse just return the current string
else if(num == (master.len() - 1) as i32){
perms.push(master);
}
//If there are more possible recurses, recurse with the current permutation
else{
let mut temp = getPermutationsFull(master.clone(), num + 1);
perms.extend(temp);
//You need to swap the current letter with every possible letter after it
//The ones needed to swap before will happen automatically when the function recurses
let mut cnt = 1;
while((num + cnt) < master.len() as i32){
master = swapString(master.clone(), num, (num + cnt));
temp = getPermutationsFull(master.clone(), num + 1);
perms.extend(temp);
master = swapString(master.clone(), num, (num + cnt));
cnt += 1;
}
//The array is not necessarily in alpha-numeric order. So if this is the full array sort it before returning
perms.sort();
}
//Return the array that was built
return perms;
}
pub fn swapString(strng: String, first: i32, second: i32) -> String{
let mut bytes = Vec::<u8>::new();
bytes.extend_from_slice(strng.as_bytes());
let temp = bytes[first as usize];
bytes[first as usize] = bytes[second as usize];
bytes[second as usize] = temp;
let mut swappedString = "".to_string();
for loc in 0..bytes.len(){
swappedString = format!("{}{}", swappedString, (bytes[loc] as char));
}
return swappedString;
}
//This function returns the gcd of two numbers
pub fn gcd(in1: i32, in2: i32) -> i32{
let mut num1 = in1;
let mut num2 = in2;
while((num1 != 0) && (num2 != 0)){
if(num1 > num2){
num1 %= num2;
}
else{
num2 %= num1;
}
}
return num1 | num2;
}
//Returns the factorial of the number passed in
pub fn factorial(num: i64) -> i64{
let mut fact = 1;
for cnt in 1 ..= num{
fact *= cnt;
}
return fact;
}