//typescriptClasses/NumberAlgorithms.ts
//Matthew Ellison
// Created: 07-13-21
//Modified: 07-13-21
//Algorithms for numbers
/*
Copyright (C) 2021 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
import { InvalidResult } from "./InvalidResult";
//Generate an infinite sequence of prime numbers using the Sieve of Eratosthenes
export function* sieveOfEratosthenes(){
//Return 2 the first time, this lets us skip all even numbers later
yield 2;
//Dictionary to hold the primes we have already found
let dict = new Map();
//Start checking for primes with the number 3 and skip all even numbers
for(let possiblePrime = 3;true;possiblePrime += 2){
//If possiblePrime is not in the dictionary it is a new prime number
//Return it and mark its next multiple
if(!dict.has(possiblePrime)){
yield possiblePrime;
dict.set(possiblePrime * possiblePrime, [possiblePrime]);
}
//If possiblePrime is in the dictionary it is a composite number
else{
//Move each witness to its next multiple
for(let num of dict.get(possiblePrime)){
let loc: number = possiblePrime + num + num;
if(dict.has(loc)){
dict.get(loc).push(num);
}
else{
dict.set(loc, [num]);
}
//We no longer need this, free the memory
dict.delete(possiblePrime);
}
}
}
}
export function* sieveOfEratosthenesBig(){
//Return 2 the first time, this lets us skip all even numbers later
yield 2n;
//Dictionary to hold the priems we have already found
let dict = new Map();
//Start checking for primes with the number 3 and skip all even numbers
for(let possiblePrime = 3n;true;possiblePrime += 2n){
//If possiblePrime is not in the dictionary it is a new prime number
//Return it and mark its next multiple
if(!dict.has(possiblePrime)){
yield possiblePrime;
dict.set(possiblePrime * possiblePrime, [possiblePrime]);
}
//If possiblePrime is in the dictionary it is a composite number
else{
//Move each witness to its next multiple
for(let num of dict.get(possiblePrime)){
let loc: bigint = possiblePrime + num + num;
if(dict.has(loc)){
dict.get(loc).push(num);
}
else{
dict.set(loc, [num]);
}
//We no longer need this, free the memory
dict.delete(possiblePrime);
}
}
}
}
//This returns the sqrt of the bigint passed in
export function sqrtBig(value: bigint): bigint{
if(value < 0n){
throw "Negative numbers are not supported";
}
let k = 2n;
let o = 0n;
let x = value;
let limit = 100;
while(x ** k !== k && x !== o && --limit){
o = x;
x = ((k - 1n) * x + value / x ** (k - 1n)) / k;
}
return x;
}
//Returns an array with all Fibonacci numbers up to goalNumber
export function getAllFib(goalNumber: number): number[]{
//Setup the variables
let fibNums: number[] = [];
//If the number is <= 0 return an empty list
if(goalNumber <= 0){
return fibNums;
}
else if(goalNumber == 1){
fibNums.push(1);
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.push(1);
fibNums.push(1);
//Loop to generate the rest of the Fibonacci numbers
while(fibNums[fibNums.length - 1] <= goalNumber){
fibNums.push((fibNums[fibNums.length - 1]) + (fibNums[fibNums.length - 2]));
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.pop();
return fibNums;
}
export function getAllFibBig(goalNumber: bigint): bigint[]{
//Setup the variables
let fibNums:bigint[] = [];
//If the number is <= 0 return an empty list
if(goalNumber <= 0){
return fibNums;
}
else if(goalNumber == 1n){
fibNums.push(1n);
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.push(1n);
fibNums.push(1n);
//Loop to generate the rest of the Fibonacci numbers
while(fibNums[fibNums.length - 1] <= goalNumber){
fibNums.push((fibNums[fibNums.length - 1]) + (fibNums[fibNums.length - 2]));
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.pop();
return fibNums;
}
//Returns an array with all primes up to goalNumber
export function getPrimes(goalNumber: number): number[]{
let primes: number[] = []; //Holds the prime numbers
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or a negative return an empty list
if(goalNumber <= 1){
return primes;
}
//Optherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2);
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(let possiblePrime: number = 3;possiblePrime <= goalNumber;possiblePrime += 2){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor: number = Math.ceil(Math.sqrt(possiblePrime));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
if((possiblePrime % primes[primesCnt]) == 0){
foundFactor = true;
break;
}
else{
++primesCnt;
}
//Check if the index has gone out of range
if(primesCnt >= primes.length){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes = primes.sort((n1, n2) => n1 - n2);
return primes;
}
export function getPrimesBig(goalNumber: bigint): bigint[]{
let primes: bigint[] = []; //Holds the prime numbers
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or a negative return an empty list
if(goalNumber <= 1){
return primes;
}
//Optherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2n);
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(let possiblePrime: bigint = 3n;possiblePrime <= goalNumber;possiblePrime += 2n){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor: bigint = sqrtBig(possiblePrime);
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
if((possiblePrime % primes[primesCnt]) == 0n){
foundFactor = true;
break;
}
else{
++primesCnt;
}
//Check if the index has gone out of range
if(primesCnt >= primes.length){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes = primes.sort(function(n1, n2){
if(n1 > n2){
return 1;
}
else if(n1 < n2){
return -1;
}
else{
return 0;
}
});
return primes;
}
//Returns an array with numberOfPrimes prime elements
export function getNumPrimes(numberOfPrimes: number): number[]{
let primes: number[] = []; //Holds the prime numbers
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or negative return an empty list
if(numberOfPrimes <= 1){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2);
}
//We can now start at 3 and skip all even number, because they cannot be prime
for(let possiblePrime: number = 3;primes.length < numberOfPrimes;possiblePrime += 2){
//Check all the current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor: number = Math.ceil(Math.sqrt(possiblePrime));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added by default
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
if((possiblePrime % primes[primesCnt]) == 0){
foundFactor = true;
break;
}
else{
++primesCnt;
}
//Check if the index has gone out of bounds
if(primesCnt >= primes.length){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes = primes.sort((n1, n2) => n1 - n2);
return primes;
}
export function getNumPrimesBig(numberOfPrimes: bigint): bigint[]{
let primes: bigint[] = []; //Holds the prime numbers
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or negative return an empty list
if(numberOfPrimes <= 1){
return primes;
}
//Otherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2n);
}
//We can now start at 3 and skip all even number, because theyu cannot be prime
for(let possiblePrime: bigint = 3n;primes.length < numberOfPrimes;possiblePrime += 2n){
//Check all the current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor: bigint = sqrtBig(possiblePrime);
//We can safely assume that ther ewill be at least 1 element in the primes list because of 2 being added by default
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
if((possiblePrime % primes[primesCnt]) == 0n){
foundFactor = true;
break;
}
else{
++primesCnt;
}
//Check if the index has gone out of bounds
if(primesCnt >= primes.length){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes = primes.sort(function(n1, n2){
if(n1 > n2){
return 1;
}
else if(n1 < n2){
return -1;
}
else{
return 0;
}
});
return primes;
}
//Returns true if possiblePrime is prime
export function isPrime(possiblePrime: number): boolean{
if(possiblePrime <= 3){
return possiblePrime > 1;
}
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
return false;
}
for(let cnt: number = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
return false;
}
}
return true;
}
export function isPrimeBig(possiblePrime: bigint): boolean{
if(possiblePrime <= 3n){
return possiblePrime > 1n;
}
else if(((possiblePrime % 2n) == 0n) || ((possiblePrime % 3n) == 0n)){
return false;
}
for(let cnt : bigint = 5n;(cnt * cnt) <= possiblePrime;cnt += 6n){
if(((possiblePrime % cnt) == 0n) || ((possiblePrime % (cnt + 2n)) == 0n)){
return false;
}
}
return true;
}
//Returns an array with all the factors of goalNumber
export function getFactors(goalNumber: number): number[]{
//You need to get all the primes that could be factors of this number so you can test them
let topPossiblePrime: number = Math.ceil(Math.sqrt(goalNumber));
let primes: number[] = getPrimes(topPossiblePrime);
let factors: number[] = [];
//You need to step through each prime and see if it is a factor in the number
for(let cnt: number = 0;cnt < primes.length;){
//If the prime is a factor you need to add it to the factor list
if((goalNumber % primes[cnt]) == 0){
factors.push(primes[cnt]);
goalNumber /= primes[cnt];
}
//Otherwise advance the location in primes you are looking at
//By not advancing f the prime is a factor you allow for multiple of the same prime number as a factor
else{
++cnt;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.length == 0){
factors.push(goalNumber);
goalNumber /= goalNumber;
}
//If for some reason the goalNumber is not 1 throw an exception
if(goalNumber != 1){
throw new InvalidResult("The factor was not 1: " + goalNumber);
}
//Return the list of factors
return factors;
}
export function getFactorsBig(goalNumber: bigint): bigint[]{
//You need to get all the primes that could be factors of this number so you can test them
let topPossiblePrime: bigint = sqrtBig(goalNumber);
let primes: bigint[] = getPrimesBig(topPossiblePrime);
let factors: bigint[] = [];
//You need to step through each prime and see if it is a factor in the number
for(let cnt: number = 0;cnt < primes.length;){
//If the prime is a factor you need to add it to the factor list
if((goalNumber % primes[cnt]) == 0n){
factors.push(primes[cnt]);
goalNumber /= primes[cnt];
}
//Otherwise advance the location in primes you are looking at
//By not advancing f the prime is a factor you allow for multiple of the same prime number as a factor
else{
++cnt;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.length == 0){
factors.push(goalNumber);
goalNumber /= goalNumber;
}
//If for some reason the goalNumber is not 1 throw an exception
if(goalNumber != 1n){
throw new InvalidResult("The factor was not 1: " + goalNumber);
}
//Return the list of factors
return factors;
}
//Returns an array with the prime divisors of goalNumber
export function getDivisors(goalNumber: number): number[]{
let divisors: number[] = [];
//Start by checking that the number is positive
if(goalNumber <= 0){
return divisors;
}
//If the number is 1 return just itself
else if(goalNumber == 1){
divisors.push(1);
return divisors;
}
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
let topPossibleDivisor: number = Math.ceil(Math.sqrt(goalNumber));
for(let possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
//If you find one add it and the number it creates to the list
if((goalNumber % possibleDivisor) == 0){
divisors.push(possibleDivisor);
//Account for the possibility of sqrt(goalNumber) being a divisor
if(possibleDivisor != topPossibleDivisor){
divisors.push(goalNumber / possibleDivisor);
}
if(divisors[divisors.length - 1] == (possibleDivisor + 1)){
++possibleDivisor;
}
}
}
//Sort the list before returning it for neatness
divisors.sort((a, b) => a - b);
//Return the list
return divisors;
}
export function getDivisorsBig(goalNumber: bigint): bigint[]{
let divisors: bigint[] = [];
//Start by checking that the number is positive
if(goalNumber <= 0n){
return divisors;
}
//If the number is 1 return just itself
else if(goalNumber == 1n){
divisors.push(1n);
return divisors;
}
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
let topPossibleDivisor: bigint = sqrtBig(goalNumber);
for(let possibleDivisor = 1n;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
//If you find one add it and the number it creates to the list
if((goalNumber % possibleDivisor) == 0n){
divisors.push(possibleDivisor);
//Account for the possibility of sqrt(goalNumber) being a divisors
if(possibleDivisor != topPossibleDivisor){
divisors.push(goalNumber / possibleDivisor);
}
if(divisors[divisors.length - 1] == (possibleDivisor + 1n)){
++possibleDivisor;
}
}
}
//Sort the list before returning it for neatness
divisors.sort((a, b) => {
if(a > b){
return 1;
}
else if(a < b){
return -1;
}
else{
return 0;
}
});
//Return the list
return divisors;
}
//Returns F[goalSubscript]
export function getFib(goalSubscript: number): number{
//Setup the variables
let fibNums: number[] = [1, 1, 0]; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
//If the number is <= 0 return 0
if(goalSubscript <= 0){
return 0;
}
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
let fibLoc: number = 2;
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
}
//Return the proper number. The location counter is 1 off of the subscript
return fibNums[(fibLoc - 1) % 3];
}
export function getFibBig(goalSubscript: bigint): bigint{
//Setup the varibles
let fibNums: bigint[] = [1n, 1n, 0n]; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
//If the number is <= 0 return 0
if(goalSubscript <= 0n){
return 0n;
}
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
let fibLoc: bigint = 2n;
for(fibLoc = 2n;fibLoc < goalSubscript;++fibLoc){
fibNums[Number(fibLoc % 3n)] = fibNums[Number((fibLoc - 1n) % 3n)] + fibNums[Number((fibLoc - 2n) % 3n)];
}
//Return the proper number. The location counter is 1 off of the subscript
return fibNums[Number((fibLoc - 1n) % 3n)];
}
//This function returns the GCD of the two numbers sent to it
export function gcd(num1: number, num2: number){
while((num1 != 0) && (num2 != 0)){
if(num1 > num2){
num1 %= num2;
}
else{
num2 %= num1;
}
}
return num1 | num2;
}
export function gcdBig(num1: bigint, num2: bigint){
while((num1 != 0n) && (num2 != 0n)){
if(num1 > num2){
num1 %= num2;
}
else{
num2 %= num1;
}
}
return num1 | num2;
}
//Return the factorial of the number passed in
export function factorial(num: number): number{
let fact: number = 1;
for(let cnt = 1;cnt <= num;++cnt){
fact *= cnt;
}
return fact;
}
export function factorialBig(num: bigint): bigint{
let fact: bigint = 1n;
for(let cnt = 1n;cnt <= num;++cnt){
fact *= cnt;
}
return fact;
}
//Converts a number to its binary equivalent
export function toBin(num: number): string{
return (num >>> 0).toString(2);
}
export function toBinBig(num: bigint): string{
let binNum = "";
while(num > 0n){
let rest = num % 2n;
if(rest == 1n){
binNum += "1";
}
else{
binNum += "0";
}
num = (num - rest) / 2n;
}
binNum = binNum.split("").reverse().join("");
if(binNum == ""){
binNum = "0";
}
return binNum;
}