mirror of
https://bitbucket.org/Mattrixwv/typescriptclasses.git
synced 2025-12-06 18:33:59 -05:00
650 lines
18 KiB
TypeScript
650 lines
18 KiB
TypeScript
//typescriptClasses/NumberAlgorithms.ts
|
|
//Matthew Ellison
|
|
// Created: 07-13-21
|
|
//Modified: 07-13-21
|
|
//Algorithms for numbers
|
|
/*
|
|
Copyright (C) 2021 Matthew Ellison
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
import { InvalidResult } from "./InvalidResult";
|
|
|
|
|
|
//Generate an infinite sequence of prime numbers using the Sieve of Eratosthenes
|
|
export function* sieveOfEratosthenes(){
|
|
//Return 2 the first time, this lets us skip all even numbers later
|
|
yield 2;
|
|
|
|
//Dictionary to hold the primes we have already found
|
|
let dict = new Map<number, number[]>();
|
|
|
|
//Start checking for primes with the number 3 and skip all even numbers
|
|
for(let possiblePrime = 3;true;possiblePrime += 2){
|
|
//If possiblePrime is not in the dictionary it is a new prime number
|
|
//Return it and mark its next multiple
|
|
if(!dict.has(possiblePrime)){
|
|
yield possiblePrime;
|
|
dict.set(possiblePrime * possiblePrime, [possiblePrime]);
|
|
}
|
|
//If possiblePrime is in the dictionary it is a composite number
|
|
else{
|
|
//Move each witness to its next multiple
|
|
for(let num of dict.get(possiblePrime)){
|
|
let loc: number = possiblePrime + num + num;
|
|
if(dict.has(loc)){
|
|
dict.get(loc).push(num);
|
|
}
|
|
else{
|
|
dict.set(loc, [num]);
|
|
}
|
|
//We no longer need this, free the memory
|
|
dict.delete(possiblePrime);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
export function* sieveOfEratosthenesBig(){
|
|
//Return 2 the first time, this lets us skip all even numbers later
|
|
yield 2n;
|
|
|
|
//Dictionary to hold the priems we have already found
|
|
let dict = new Map<bigint, bigint[]>();
|
|
|
|
//Start checking for primes with the number 3 and skip all even numbers
|
|
for(let possiblePrime = 3n;true;possiblePrime += 2n){
|
|
//If possiblePrime is not in the dictionary it is a new prime number
|
|
//Return it and mark its next multiple
|
|
if(!dict.has(possiblePrime)){
|
|
yield possiblePrime;
|
|
dict.set(possiblePrime * possiblePrime, [possiblePrime]);
|
|
}
|
|
//If possiblePrime is in the dictionary it is a composite number
|
|
else{
|
|
//Move each witness to its next multiple
|
|
for(let num of dict.get(possiblePrime)){
|
|
let loc: bigint = possiblePrime + num + num;
|
|
if(dict.has(loc)){
|
|
dict.get(loc).push(num);
|
|
}
|
|
else{
|
|
dict.set(loc, [num]);
|
|
}
|
|
//We no longer need this, free the memory
|
|
dict.delete(possiblePrime);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//This returns the sqrt of the bigint passed in
|
|
export function sqrtBig(value: bigint): bigint{
|
|
if(value < 0n){
|
|
throw "Negative numbers are not supported";
|
|
}
|
|
|
|
let k = 2n;
|
|
let o = 0n;
|
|
let x = value;
|
|
let limit = 100;
|
|
|
|
while(x ** k !== k && x !== o && --limit){
|
|
o = x;
|
|
x = ((k - 1n) * x + value / x ** (k - 1n)) / k;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
//Returns an array with all Fibonacci numbers up to goalNumber
|
|
export function getAllFib(goalNumber: number): number[]{
|
|
//Setup the variables
|
|
let fibNums: number[] = [];
|
|
|
|
//If the number is <= 0 return an empty list
|
|
if(goalNumber <= 0){
|
|
return fibNums;
|
|
}
|
|
else if(goalNumber == 1){
|
|
fibNums.push(1);
|
|
return fibNums;
|
|
}
|
|
|
|
//This means that at least 2 1's are elements
|
|
fibNums.push(1);
|
|
fibNums.push(1);
|
|
|
|
//Loop to generate the rest of the Fibonacci numbers
|
|
while(fibNums[fibNums.length - 1] <= goalNumber){
|
|
fibNums.push((fibNums[fibNums.length - 1]) + (fibNums[fibNums.length - 2]));
|
|
}
|
|
|
|
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
|
fibNums.pop();
|
|
return fibNums;
|
|
}
|
|
export function getAllFibBig(goalNumber: bigint): bigint[]{
|
|
//Setup the variables
|
|
let fibNums:bigint[] = [];
|
|
|
|
//If the number is <= 0 return an empty list
|
|
if(goalNumber <= 0){
|
|
return fibNums;
|
|
}
|
|
else if(goalNumber == 1n){
|
|
fibNums.push(1n);
|
|
return fibNums;
|
|
}
|
|
|
|
//This means that at least 2 1's are elements
|
|
fibNums.push(1n);
|
|
fibNums.push(1n);
|
|
|
|
//Loop to generate the rest of the Fibonacci numbers
|
|
while(fibNums[fibNums.length - 1] <= goalNumber){
|
|
fibNums.push((fibNums[fibNums.length - 1]) + (fibNums[fibNums.length - 2]));
|
|
}
|
|
|
|
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
|
fibNums.pop();
|
|
return fibNums;
|
|
}
|
|
|
|
//Returns an array with all primes up to goalNumber
|
|
export function getPrimes(goalNumber: number): number[]{
|
|
let primes: number[] = []; //Holds the prime numbers
|
|
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or a negative return an empty list
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
//Optherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.push(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(let possiblePrime: number = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
let topPossibleFactor: number = Math.ceil(Math.sqrt(possiblePrime));
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of range
|
|
if(primesCnt >= primes.length){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.push(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes = primes.sort((n1, n2) => n1 - n2);
|
|
return primes;
|
|
}
|
|
export function getPrimesBig(goalNumber: bigint): bigint[]{
|
|
let primes: bigint[] = []; //Holds the prime numbers
|
|
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or a negative return an empty list
|
|
if(goalNumber <= 1){
|
|
return primes;
|
|
}
|
|
//Optherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.push(2n);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
|
for(let possiblePrime: bigint = 3n;possiblePrime <= goalNumber;possiblePrime += 2n){
|
|
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
let topPossibleFactor: bigint = sqrtBig(possiblePrime);
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
|
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0n){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of range
|
|
if(primesCnt >= primes.length){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.push(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes = primes.sort(function(n1, n2){
|
|
if(n1 > n2){
|
|
return 1;
|
|
}
|
|
else if(n1 < n2){
|
|
return -1;
|
|
}
|
|
else{
|
|
return 0;
|
|
}
|
|
});
|
|
return primes;
|
|
}
|
|
|
|
//Returns an array with numberOfPrimes prime elements
|
|
export function getNumPrimes(numberOfPrimes: number): number[]{
|
|
let primes: number[] = []; //Holds the prime numbers
|
|
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.push(2);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even number, because they cannot be prime
|
|
for(let possiblePrime: number = 3;primes.length < numberOfPrimes;possiblePrime += 2){
|
|
//Check all the current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
let topPossibleFactor: number = Math.ceil(Math.sqrt(possiblePrime));
|
|
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added by default
|
|
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of bounds
|
|
if(primesCnt >= primes.length){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.push(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes = primes.sort((n1, n2) => n1 - n2);
|
|
return primes;
|
|
}
|
|
export function getNumPrimesBig(numberOfPrimes: bigint): bigint[]{
|
|
let primes: bigint[] = []; //Holds the prime numbers
|
|
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
|
|
|
|
//If the number is 0 or negative return an empty list
|
|
if(numberOfPrimes <= 1){
|
|
return primes;
|
|
}
|
|
//Otherwise the number is at least 2, so 2 should be added to the list
|
|
else{
|
|
primes.push(2n);
|
|
}
|
|
|
|
//We can now start at 3 and skip all even number, because theyu cannot be prime
|
|
for(let possiblePrime: bigint = 3n;primes.length < numberOfPrimes;possiblePrime += 2n){
|
|
//Check all the current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
|
let topPossibleFactor: bigint = sqrtBig(possiblePrime);
|
|
//We can safely assume that ther ewill be at least 1 element in the primes list because of 2 being added by default
|
|
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
|
|
if((possiblePrime % primes[primesCnt]) == 0n){
|
|
foundFactor = true;
|
|
break;
|
|
}
|
|
else{
|
|
++primesCnt;
|
|
}
|
|
//Check if the index has gone out of bounds
|
|
if(primesCnt >= primes.length){
|
|
break;
|
|
}
|
|
}
|
|
|
|
//If you didn't find a factor then the current number must be prime
|
|
if(!foundFactor){
|
|
primes.push(possiblePrime);
|
|
}
|
|
else{
|
|
foundFactor = false;
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it
|
|
primes = primes.sort(function(n1, n2){
|
|
if(n1 > n2){
|
|
return 1;
|
|
}
|
|
else if(n1 < n2){
|
|
return -1;
|
|
}
|
|
else{
|
|
return 0;
|
|
}
|
|
});
|
|
return primes;
|
|
}
|
|
|
|
//Returns true if possiblePrime is prime
|
|
export function isPrime(possiblePrime: number): boolean{
|
|
if(possiblePrime <= 3){
|
|
return possiblePrime > 1;
|
|
}
|
|
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
|
|
return false;
|
|
}
|
|
for(let cnt: number = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
|
|
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
export function isPrimeBig(possiblePrime: bigint): boolean{
|
|
if(possiblePrime <= 3n){
|
|
return possiblePrime > 1n;
|
|
}
|
|
else if(((possiblePrime % 2n) == 0n) || ((possiblePrime % 3n) == 0n)){
|
|
return false;
|
|
}
|
|
for(let cnt : bigint = 5n;(cnt * cnt) <= possiblePrime;cnt += 6n){
|
|
if(((possiblePrime % cnt) == 0n) || ((possiblePrime % (cnt + 2n)) == 0n)){
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//Returns an array with all the factors of goalNumber
|
|
export function getFactors(goalNumber: number): number[]{
|
|
//You need to get all the primes that could be factors of this number so you can test them
|
|
let topPossiblePrime: number = Math.ceil(Math.sqrt(goalNumber));
|
|
let primes: number[] = getPrimes(topPossiblePrime);
|
|
let factors: number[] = [];
|
|
|
|
//You need to step through each prime and see if it is a factor in the number
|
|
for(let cnt: number = 0;cnt < primes.length;){
|
|
//If the prime is a factor you need to add it to the factor list
|
|
if((goalNumber % primes[cnt]) == 0){
|
|
factors.push(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
//Otherwise advance the location in primes you are looking at
|
|
//By not advancing f the prime is a factor you allow for multiple of the same prime number as a factor
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If you didn't get any factors the number itself must be a prime
|
|
if(factors.length == 0){
|
|
factors.push(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
//If for some reason the goalNumber is not 1 throw an exception
|
|
if(goalNumber != 1){
|
|
throw new InvalidResult("The factor was not 1: " + goalNumber);
|
|
}
|
|
|
|
//Return the list of factors
|
|
return factors;
|
|
}
|
|
export function getFactorsBig(goalNumber: bigint): bigint[]{
|
|
//You need to get all the primes that could be factors of this number so you can test them
|
|
let topPossiblePrime: bigint = sqrtBig(goalNumber);
|
|
let primes: bigint[] = getPrimesBig(topPossiblePrime);
|
|
let factors: bigint[] = [];
|
|
|
|
//You need to step through each prime and see if it is a factor in the number
|
|
for(let cnt: number = 0;cnt < primes.length;){
|
|
//If the prime is a factor you need to add it to the factor list
|
|
if((goalNumber % primes[cnt]) == 0n){
|
|
factors.push(primes[cnt]);
|
|
goalNumber /= primes[cnt];
|
|
}
|
|
//Otherwise advance the location in primes you are looking at
|
|
//By not advancing f the prime is a factor you allow for multiple of the same prime number as a factor
|
|
else{
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//If you didn't get any factors the number itself must be a prime
|
|
if(factors.length == 0){
|
|
factors.push(goalNumber);
|
|
goalNumber /= goalNumber;
|
|
}
|
|
|
|
//If for some reason the goalNumber is not 1 throw an exception
|
|
if(goalNumber != 1n){
|
|
throw new InvalidResult("The factor was not 1: " + goalNumber);
|
|
}
|
|
|
|
//Return the list of factors
|
|
return factors;
|
|
}
|
|
|
|
//Returns an array with the prime divisors of goalNumber
|
|
export function getDivisors(goalNumber: number): number[]{
|
|
let divisors: number[] = [];
|
|
|
|
//Start by checking that the number is positive
|
|
if(goalNumber <= 0){
|
|
return divisors;
|
|
}
|
|
//If the number is 1 return just itself
|
|
else if(goalNumber == 1){
|
|
divisors.push(1);
|
|
return divisors;
|
|
}
|
|
|
|
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
|
let topPossibleDivisor: number = Math.ceil(Math.sqrt(goalNumber));
|
|
for(let possibleDivisor = 1;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//If you find one add it and the number it creates to the list
|
|
if((goalNumber % possibleDivisor) == 0){
|
|
divisors.push(possibleDivisor);
|
|
//Account for the possibility of sqrt(goalNumber) being a divisor
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.push(goalNumber / possibleDivisor);
|
|
}
|
|
if(divisors[divisors.length - 1] == (possibleDivisor + 1)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it for neatness
|
|
divisors.sort((a, b) => a - b);
|
|
//Return the list
|
|
return divisors;
|
|
}
|
|
export function getDivisorsBig(goalNumber: bigint): bigint[]{
|
|
let divisors: bigint[] = [];
|
|
|
|
//Start by checking that the number is positive
|
|
if(goalNumber <= 0n){
|
|
return divisors;
|
|
}
|
|
//If the number is 1 return just itself
|
|
else if(goalNumber == 1n){
|
|
divisors.push(1n);
|
|
return divisors;
|
|
}
|
|
|
|
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
|
let topPossibleDivisor: bigint = sqrtBig(goalNumber);
|
|
for(let possibleDivisor = 1n;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
|
//If you find one add it and the number it creates to the list
|
|
if((goalNumber % possibleDivisor) == 0n){
|
|
divisors.push(possibleDivisor);
|
|
//Account for the possibility of sqrt(goalNumber) being a divisors
|
|
if(possibleDivisor != topPossibleDivisor){
|
|
divisors.push(goalNumber / possibleDivisor);
|
|
}
|
|
if(divisors[divisors.length - 1] == (possibleDivisor + 1n)){
|
|
++possibleDivisor;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Sort the list before returning it for neatness
|
|
divisors.sort((a, b) => {
|
|
if(a > b){
|
|
return 1;
|
|
}
|
|
else if(a < b){
|
|
return -1;
|
|
}
|
|
else{
|
|
return 0;
|
|
}
|
|
});
|
|
//Return the list
|
|
return divisors;
|
|
}
|
|
|
|
//Returns F[goalSubscript]
|
|
export function getFib(goalSubscript: number): number{
|
|
//Setup the variables
|
|
let fibNums: number[] = [1, 1, 0]; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
|
|
|
//If the number is <= 0 return 0
|
|
if(goalSubscript <= 0){
|
|
return 0;
|
|
}
|
|
|
|
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
let fibLoc: number = 2;
|
|
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
|
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
|
}
|
|
|
|
//Return the proper number. The location counter is 1 off of the subscript
|
|
return fibNums[(fibLoc - 1) % 3];
|
|
}
|
|
export function getFibBig(goalSubscript: bigint): bigint{
|
|
//Setup the varibles
|
|
let fibNums: bigint[] = [1n, 1n, 0n]; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
|
|
|
//If the number is <= 0 return 0
|
|
if(goalSubscript <= 0n){
|
|
return 0n;
|
|
}
|
|
|
|
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
|
let fibLoc: bigint = 2n;
|
|
for(fibLoc = 2n;fibLoc < goalSubscript;++fibLoc){
|
|
fibNums[Number(fibLoc % 3n)] = fibNums[Number((fibLoc - 1n) % 3n)] + fibNums[Number((fibLoc - 2n) % 3n)];
|
|
}
|
|
|
|
//Return the proper number. The location counter is 1 off of the subscript
|
|
return fibNums[Number((fibLoc - 1n) % 3n)];
|
|
}
|
|
|
|
//This function returns the GCD of the two numbers sent to it
|
|
export function gcd(num1: number, num2: number){
|
|
while((num1 != 0) && (num2 != 0)){
|
|
if(num1 > num2){
|
|
num1 %= num2;
|
|
}
|
|
else{
|
|
num2 %= num1;
|
|
}
|
|
}
|
|
return num1 | num2;
|
|
}
|
|
export function gcdBig(num1: bigint, num2: bigint){
|
|
while((num1 != 0n) && (num2 != 0n)){
|
|
if(num1 > num2){
|
|
num1 %= num2;
|
|
}
|
|
else{
|
|
num2 %= num1;
|
|
}
|
|
}
|
|
return num1 | num2;
|
|
}
|
|
|
|
//Return the factorial of the number passed in
|
|
export function factorial(num: number): number{
|
|
let fact: number = 1;
|
|
for(let cnt = 1;cnt <= num;++cnt){
|
|
fact *= cnt;
|
|
}
|
|
return fact;
|
|
}
|
|
export function factorialBig(num: bigint): bigint{
|
|
let fact: bigint = 1n;
|
|
for(let cnt = 1n;cnt <= num;++cnt){
|
|
fact *= cnt;
|
|
}
|
|
return fact;
|
|
}
|
|
|
|
//Converts a number to its binary equivalent
|
|
export function toBin(num: number): string{
|
|
return (num >>> 0).toString(2);
|
|
}
|
|
export function toBinBig(num: bigint): string{
|
|
let binNum = "";
|
|
while(num > 0n){
|
|
let rest = num % 2n;
|
|
if(rest == 1n){
|
|
binNum += "1";
|
|
}
|
|
else{
|
|
binNum += "0";
|
|
}
|
|
num = (num - rest) / 2n;
|
|
}
|
|
binNum = binNum.split("").reverse().join("");
|
|
if(binNum == ""){
|
|
binNum = "0";
|
|
}
|
|
return binNum;
|
|
}
|