Files
TypescriptClasses/Algorithms.ts
2020-10-19 18:10:06 -04:00

289 lines
8.2 KiB
TypeScript

//typescriptClasses/Algorithms.ts
//Matthew Ellison
// Created: 10-19-20
//Modified: 10-19-20
//This class holds many algorithms that I have found it useful to keep around
/*
Copyright (C) 2020 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
import { InvalidResult } from "./InvalidResult";
export function arrayEquals(array1: any[], array2: any[]): boolean{
//If they aren't the same type they aren't equal
if((typeof array1) != (typeof array2)){
return false;
}
//If they aren't the same length they aren't equal
else if(array1.length != array2.length){
return false;
}
else{
//Loop through every element to see if each one is equal
for(let cnt = 0;cnt < array1.length;++cnt){
//If any element in the same location is different return false
if(array1[cnt] != array2[cnt]){
return false;
}
}
//If every element was the same they are equal
return true;
}
}
export function sqrtBig(value: bigint): bigint{
if(value < 0n){
throw "Negative numbers are not supported";
}
let k = 2n;
let o = 0n;
let x = value;
let limit = 100;
while(x ** k !== k && x !== o && --limit){
o = x;
x = ((k - 1n) * x + value / x ** (k - 1n)) / k;
}
return x;
}
export function getAllFib(goalNumber: number): number[]{
//Setup the variables
let fibNums: number[] = [];
//If the number is <= 0 return an empty list
if(goalNumber <= 0){
return fibNums;
}
else if(goalNumber == 1){
fibNums.push(1);
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.push(1);
fibNums.push(1);
//Loop to generate the rest of the Fibonacci numbers
while(fibNums[fibNums.length - 1] <= goalNumber){
fibNums.push((fibNums[fibNums.length - 1]) + (fibNums[fibNums.length - 2]));
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.pop();
return fibNums;
}
export function getAllFibBig(goalNumber: bigint): bigint[]{
//Setup the variables
let fibNums:bigint[] = [];
//If the number is <= 0 return an empty list
if(goalNumber <= 0){
return fibNums;
}
else if(goalNumber == 1n){
fibNums.push(1n);
return fibNums;
}
//This means that at least 2 1's are elements
fibNums.push(1n);
fibNums.push(1n);
//Loop to generate the rest of the Fibonacci numbers
while(fibNums[fibNums.length - 1] <= goalNumber){
fibNums.push((fibNums[fibNums.length - 1]) + (fibNums[fibNums.length - 2]));
}
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
fibNums.pop();
return fibNums;
}
export function getPrimes(goalNumber: number): number[]{
let primes: number[] = []; //Holds the prime numbers
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or a negative return an empty list
if(goalNumber <= 1){
return primes;
}
//Optherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2);
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(let possiblePrime: number = 3;possiblePrime <= goalNumber;possiblePrime += 2){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor: number = Math.ceil(Math.sqrt(possiblePrime));
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
if((possiblePrime % primes[primesCnt]) == 0){
foundFactor = true;
break;
}
else{
++primesCnt;
}
//Check if the index has gone out of range
if(primesCnt >= primes.length){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes = primes.sort((n1, n2) => n1 - n2);
return primes;
}
export function getPrimesBig(goalNumber: bigint): bigint[]{
let primes: bigint[] = []; //Holds the prime numbers
let foundFactor: boolean = false; //A flag for whether a factor of the current number has been found
//If the number is 0 or a negative return an empty list
if(goalNumber <= 1){
return primes;
}
//Optherwise the number is at least 2, so 2 should be added to the list
else{
primes.push(2n);
}
//We can now start at 3 and skip all even numbers, because they cannot be prime
for(let possiblePrime: bigint = 3n;possiblePrime <= goalNumber;possiblePrime += 2n){
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
let topPossibleFactor: bigint = sqrtBig(possiblePrime);
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
for(let primesCnt: number = 0;primes[primesCnt] <= topPossibleFactor;){
if((possiblePrime % primes[primesCnt]) == 0n){
foundFactor = true;
break;
}
else{
++primesCnt;
}
//Check if the index has gone out of range
if(primesCnt >= primes.length){
break;
}
}
//If you didn't find a factor then the current number must be prime
if(!foundFactor){
primes.push(possiblePrime);
}
else{
foundFactor = false;
}
}
//Sort the list before returning it
primes = primes.sort(function(n1, n2){
if(n1 > n2){
return 1;
}
else if(n1 < n2){
return -1;
}
else{
return 0;
}
});
return primes;
}
export function getFactors(goalNumber: number): number[]{
//You need to get all the primes that could be factors of this number so you can test them
let topPossiblePrime: number = Math.ceil(Math.sqrt(goalNumber));
let primes: number[] = getPrimes(topPossiblePrime);
let factors: number[] = [];
//You need to step through each prime and see if it is a factor in the number
for(let cnt: number = 0;cnt < primes.length;){
//If the prime is a factor you need to add it to the factor list
if((goalNumber % primes[cnt]) == 0){
factors.push(primes[cnt]);
goalNumber /= primes[cnt];
}
//Otherwise advance the location in primes you are looking at
//By not advancing f the prime is a factor you allow for multiple of the same prime number as a factor
else{
++cnt;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.length == 0){
factors.push(goalNumber);
goalNumber /= goalNumber;
}
//If for some reason the goalNumber is not 1 throw an exception
if(goalNumber != 1){
throw new InvalidResult("The factor was not 1: " + goalNumber);
}
//Return the list of factors
return factors;
}
export function getFactorsBig(goalNumber: bigint): bigint[]{
//You need to get all the primes that could be factors of this number so you can test them
let topPossiblePrime: bigint = sqrtBig(goalNumber);
let primes: bigint[] = getPrimesBig(topPossiblePrime);
let factors: bigint[] = [];
//You need to step through each prime and see if it is a factor in the number
for(let cnt: number = 0;cnt < primes.length;){
//If the prime is a factor you need to add it to the factor list
if((goalNumber % primes[cnt]) == 0n){
factors.push(primes[cnt]);
goalNumber /= primes[cnt];
}
//Otherwise advance the location in primes you are looking at
//By not advancing f the prime is a factor you allow for multiple of the same prime number as a factor
else{
++cnt;
}
}
//If you didn't get any factors the number itself must be a prime
if(factors.length == 0){
factors.push(goalNumber);
goalNumber /= goalNumber;
}
//If for some reason the goalNumber is not 1 throw an exception
if(goalNumber != 1n){
throw new InvalidResult("The factor was not 1: " + goalNumber);
}
//Return the list of factors
return factors;
}