mirror of
https://bitbucket.org/Mattrixwv/projecteulercs.git
synced 2025-12-06 17:23:57 -05:00
Added solution to problem 32
This commit is contained in:
@@ -33,7 +33,7 @@ namespace ProjectEulerCS{
|
|||||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||||||
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
||||||
30, 31, 67};
|
30, 31, 32, 67};
|
||||||
public static System.Collections.Generic.List<int> PROBLEM_NUMBERS{
|
public static System.Collections.Generic.List<int> PROBLEM_NUMBERS{
|
||||||
get { return _PROBLEM_NUMBERS; }
|
get { return _PROBLEM_NUMBERS; }
|
||||||
}
|
}
|
||||||
@@ -73,6 +73,7 @@ namespace ProjectEulerCS{
|
|||||||
case 29: problem = new Problem29(); break;
|
case 29: problem = new Problem29(); break;
|
||||||
case 30: problem = new Problem30(); break;
|
case 30: problem = new Problem30(); break;
|
||||||
case 31: problem = new Problem31(); break;
|
case 31: problem = new Problem31(); break;
|
||||||
|
case 32: problem = new Problem32(); break;
|
||||||
case 67: problem = new Problem67(); break;
|
case 67: problem = new Problem67(); break;
|
||||||
}
|
}
|
||||||
return problem;
|
return problem;
|
||||||
|
|||||||
173
ProjectEulerCS/Problems/Problem32.cs
Normal file
173
ProjectEulerCS/Problems/Problem32.cs
Normal file
@@ -0,0 +1,173 @@
|
|||||||
|
//ProjectEuler/ProjectEulerCS/src/Problems/Problem32.cs
|
||||||
|
//Matthew Ellison
|
||||||
|
// Created: 10-03-20
|
||||||
|
//Modified: 10-03-20
|
||||||
|
//Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.
|
||||||
|
//Unless otherwise listed all non-standard includes are my own creation and available from https://bibucket.org/Mattrixwv/CSClasses
|
||||||
|
/*
|
||||||
|
Copyright (C) 2020 Matthew Ellison
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
using System.Collections.Generic;
|
||||||
|
|
||||||
|
|
||||||
|
namespace ProjectEulerCS.Problems{
|
||||||
|
public class Problem32 : Problem{
|
||||||
|
//Structures
|
||||||
|
//Holds the set of numbers that make a product
|
||||||
|
private struct ProductSet{
|
||||||
|
private readonly int multiplicand;
|
||||||
|
private readonly int multiplier;
|
||||||
|
public int Multiplicand{
|
||||||
|
get{
|
||||||
|
return multiplicand;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
public int Multiplier{
|
||||||
|
get{
|
||||||
|
return multiplier;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
public int Product{
|
||||||
|
get{
|
||||||
|
return (multiplicand * multiplier);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
public ProductSet(int multiplicand, int multiplier){
|
||||||
|
this.multiplicand = multiplicand;
|
||||||
|
this.multiplier = multiplier;
|
||||||
|
}
|
||||||
|
public override bool Equals(object obj){
|
||||||
|
if(obj == null || GetType() != obj.GetType()){
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
ProductSet secondSet = (ProductSet)obj;
|
||||||
|
|
||||||
|
//Return true if the products are the same
|
||||||
|
return (Product == secondSet.Product);
|
||||||
|
}
|
||||||
|
public override int GetHashCode(){
|
||||||
|
return multiplicand ^ multiplier;
|
||||||
|
}
|
||||||
|
public override string ToString(){
|
||||||
|
return $"{multiplicand}{multiplier}{Product}";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Variables
|
||||||
|
//Static variables
|
||||||
|
private const int TOP_MULTIPLICAND = 99; //The largest multiplicand to check
|
||||||
|
private const int TOP_MULTIPLIER = 4999; //The largest multiplier to check
|
||||||
|
//Instance variables
|
||||||
|
private readonly List<ProductSet> listOfProducts; //The list of unique products that are 1-9 pandigital
|
||||||
|
private long sumOfPandigitals; //THe sum of the products of the pandigital numbers
|
||||||
|
//Gets
|
||||||
|
public long SumOfPandigitals{
|
||||||
|
get{
|
||||||
|
if(!solved){
|
||||||
|
throw new Unsolved();
|
||||||
|
}
|
||||||
|
return sumOfPandigitals;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
public override string Result{
|
||||||
|
get{
|
||||||
|
if(!solved){
|
||||||
|
throw new Unsolved();
|
||||||
|
}
|
||||||
|
return $"There are {listOfProducts.Count} unique 1-9 pandigitals\nThe sum of the products of these pandigitals is {sumOfPandigitals}";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Functions
|
||||||
|
//Constructor
|
||||||
|
public Problem32() : base("Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital."){
|
||||||
|
listOfProducts = new List<ProductSet>();
|
||||||
|
sumOfPandigitals = 0;
|
||||||
|
}
|
||||||
|
//Operational functions
|
||||||
|
//Solve the problem
|
||||||
|
public override void Solve(){
|
||||||
|
//If the problem has already been solved do nothing and end the function
|
||||||
|
if(solved){
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Start the timer
|
||||||
|
timer.Start();
|
||||||
|
|
||||||
|
//Create the multiplicand and start working your way up
|
||||||
|
for(int multiplicand = 1;multiplicand <= TOP_MULTIPLICAND;++multiplicand){
|
||||||
|
//Run through all possible multipliers
|
||||||
|
for(int multiplier = multiplicand;multiplier <= TOP_MULTIPLIER;++multiplier){
|
||||||
|
ProductSet currentProductSet = new ProductSet(multiplicand, multiplier);
|
||||||
|
//If the product is too long move on the the next possible number
|
||||||
|
if(currentProductSet.ToString().Length > 9){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
//If the current number is pandigital that doesn't already exist in the list add it to the list
|
||||||
|
if(IsPandigital(currentProductSet)){
|
||||||
|
if(!listOfProducts.Contains(currentProductSet)){
|
||||||
|
listOfProducts.Add(currentProductSet);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Get the sum of the products of the pandigitals
|
||||||
|
foreach(ProductSet prod in listOfProducts){
|
||||||
|
sumOfPandigitals += prod.Product;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Stop the timer
|
||||||
|
timer.Stop();
|
||||||
|
|
||||||
|
//Throw a flag to show the problem is solved
|
||||||
|
solved = true;
|
||||||
|
}
|
||||||
|
//Returns true if the passed productset is 1-9 pandigital
|
||||||
|
private bool IsPandigital(ProductSet currentSet){
|
||||||
|
//Get the numbers out of the object and put them into a string
|
||||||
|
string numberString = currentSet.ToString();
|
||||||
|
//Make sure the string is the correct length
|
||||||
|
if(numberString.Length != 9){
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
//Make sure every number from 1-9 is contained exactly once
|
||||||
|
for(int panNumber = 1;panNumber <= 9;++panNumber){
|
||||||
|
//Make sure there is exactly one of this number contained in the string
|
||||||
|
if(mee.Algorithms.FindNumOccurrence(numberString, panNumber.ToString()[0]) != 1){
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//If all numbers were found in the string return true
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
//Reset the problem so it can be run again
|
||||||
|
public override void Reset(){
|
||||||
|
base.Reset();
|
||||||
|
listOfProducts.Clear();
|
||||||
|
sumOfPandigitals = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Results:
|
||||||
|
There are 7 unique 1-9 pandigitals
|
||||||
|
The sum of the products of these pandigitals is 45228
|
||||||
|
It took an average of 16.960 milliseconds to run this problem through 100 iterations
|
||||||
|
*/
|
||||||
Reference in New Issue
Block a user