mirror of
https://bitbucket.org/Mattrixwv/projecteulerjava.git
synced 2025-12-06 17:13:58 -05:00
Updated problem's test times
This commit is contained in:
@@ -44,11 +44,11 @@ public class Problem1 extends Problem{
|
|||||||
}
|
}
|
||||||
timer.stop();
|
timer.stop();
|
||||||
//Save the results
|
//Save the results
|
||||||
result = "The sum of all numbers < " + TOP_NUM.toString() + " is " + sum.toString();
|
result = "The sum of all numbers < " + TOP_NUM.toString() + 1 + " is " + sum.toString();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The sum of all numbers < 1000 is 233168
|
The sum of all numbers < 1000 is 233168
|
||||||
It took 504.226 microseconds to run this algorithm
|
It took 140.000 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -49,5 +49,6 @@ public class Problem10 extends Problem{
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
|
The sum of all the primes < 2000000 is 142913828922
|
||||||
|
It took 201.347 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -189,5 +189,5 @@ public class Problem11 extends Problem{
|
|||||||
/* Results:
|
/* Results:
|
||||||
The greatest product of 4 numbers in a line is 70600674
|
The greatest product of 4 numbers in a line is 70600674
|
||||||
The numbers are [89, 94, 97, 87]
|
The numbers are [89, 94, 97, 87]
|
||||||
It took 2.442 milliseconds to run this algorithm
|
It took 1.310 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -69,5 +69,5 @@ public class Problem12 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The triangulare number 76576500 is the sum of all numbers >= 12375 and has 576 divisors
|
The triangulare number 76576500 is the sum of all numbers >= 12375 and has 576 divisors
|
||||||
It took 758.987 milliseconds to run this algorithms
|
It took 373.274 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -257,5 +257,5 @@ public class Problem13 extends Problem{
|
|||||||
/* Results:
|
/* Results:
|
||||||
The sum of all 100 numbers is 5537376230390876637302048746832985971773659831892672
|
The sum of all 100 numbers is 5537376230390876637302048746832985971773659831892672
|
||||||
The first 10 digits of the sum of the numbers is 5537376230
|
The first 10 digits of the sum of the numbers is 5537376230
|
||||||
It took 3.185 milliseconds to run this algorithms
|
It took 919.500 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -61,7 +61,7 @@ public class Problem14 extends Problem{
|
|||||||
result = String.format("The number %d produced a chain of %d steps\n", maxNum, maxLength);
|
result = String.format("The number %d produced a chain of %d steps\n", maxNum, maxLength);
|
||||||
}
|
}
|
||||||
//This function follows the rules of the sequence and returns its length
|
//This function follows the rules of the sequence and returns its length
|
||||||
private static Long checkSeries(Long num){
|
private Long checkSeries(Long num){
|
||||||
Long length = 1L; //Start at 1 becuase you need to count the starting number
|
Long length = 1L; //Start at 1 becuase you need to count the starting number
|
||||||
|
|
||||||
//Follow the series, adding 1 for each step you take
|
//Follow the series, adding 1 for each step you take
|
||||||
@@ -82,5 +82,5 @@ public class Problem14 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The number 837799 produced a chain of 525 steps
|
The number 837799 produced a chain of 525 steps
|
||||||
It took 1.006 seconds to run this algorithm
|
It took 919.500 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -33,7 +33,7 @@ public class Problem15 extends Problem{
|
|||||||
private Long numOfRoutes = 0L;
|
private Long numOfRoutes = 0L;
|
||||||
|
|
||||||
public Problem15(){
|
public Problem15(){
|
||||||
super("How many routes from the top left corner to the bottom right corner are there through a 20×20 grid if you can only move right and down?");
|
super("How many routes from the top left corner to the bottom right corner are there through a 20x20 grid if you can only move right and down?");
|
||||||
}
|
}
|
||||||
public void solve(){
|
public void solve(){
|
||||||
//Setup the rest of the variables
|
//Setup the rest of the variables
|
||||||
@@ -75,5 +75,6 @@ public class Problem15 extends Problem{
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
|
The number of routes is 137846528820
|
||||||
|
It took 26.396 minutes to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -65,5 +65,5 @@ public class Problem16 extends Problem{
|
|||||||
/* Results:
|
/* Results:
|
||||||
2^1000 = 10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376
|
2^1000 = 10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376
|
||||||
The sum of the elements is 1366
|
The sum of the elements is 1366
|
||||||
It took 1.104 milliseconds to run this algorithm
|
It took 411.699 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -207,5 +207,5 @@ public class Problem17 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The sum of all the letters in all the numbers 1-1000 is 21124
|
The sum of all the letters in all the numbers 1-1000 is 21124
|
||||||
It took 4.862 milliseconds to run this algorithm
|
It took 4.367 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -161,5 +161,5 @@ public class Problem18 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The value of the longest path is 1074
|
The value of the longest path is 1074
|
||||||
It took 5.146 milliseconds to run this algorithm
|
It took 1.585 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -172,5 +172,5 @@ public class Problem19 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
There are 171 Sundays that landed on the first of the months from 1901 to 2000
|
There are 171 Sundays that landed on the first of the months from 1901 to 2000
|
||||||
It took 67.638 milliseconds to run this algorithms
|
It took 46.394 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -57,5 +57,5 @@ public class Problem2 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The sum of all even fibonacci numbers <= 3999999 is 4613732
|
The sum of all even fibonacci numbers <= 3999999 is 4613732
|
||||||
It took 940.825 microseconds to run this algorithm
|
It took 551.500 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ import java.math.BigInteger;
|
|||||||
|
|
||||||
public class Problem20 extends Problem{
|
public class Problem20 extends Problem{
|
||||||
//The largest number that will be multiplied
|
//The largest number that will be multiplied
|
||||||
private static Integer TOP_NUM = 100;
|
private static final Integer TOP_NUM = 100;
|
||||||
|
|
||||||
public Problem20(){
|
public Problem20(){
|
||||||
super("What is the sum of the digits of 100!?");
|
super("What is the sum of the digits of 100!?");
|
||||||
@@ -65,5 +65,5 @@ public class Problem20 extends Problem{
|
|||||||
/* Restuls:
|
/* Restuls:
|
||||||
100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
|
100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
|
||||||
The sum of the digits is: 648
|
The sum of the digits is: 648
|
||||||
It took 2.667 milliseconds to run this algorithm
|
It took 375.798 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -86,7 +86,7 @@ public class Problem21 extends Problem{
|
|||||||
for(int cnt = 0;cnt < amicable.size();++cnt){
|
for(int cnt = 0;cnt < amicable.size();++cnt){
|
||||||
result += amicable.get(cnt).toString() + "\n";
|
result += amicable.get(cnt).toString() + "\n";
|
||||||
}
|
}
|
||||||
result = String.format("The sum of all of these amicable numbers is %d\n", Algorithms.getSum(amicable));
|
result += String.format("The sum of all of these amicable numbers is %d\n", Algorithms.getSum(amicable));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -103,5 +103,5 @@ All amicable numbers less than 10000 are
|
|||||||
6232
|
6232
|
||||||
6368
|
6368
|
||||||
The sum of all of these amicable numbers is 31626
|
The sum of all of these amicable numbers is 31626
|
||||||
It took 27.645 milliseconds to run this algorithm
|
It took 23.551 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -30,7 +30,7 @@ import java.util.Collections;
|
|||||||
|
|
||||||
|
|
||||||
public class Problem22 extends Problem{
|
public class Problem22 extends Problem{
|
||||||
private static ArrayList<String> names = new ArrayList<String>(Arrays.asList("MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN",
|
private static final ArrayList<String> names = new ArrayList<String>(Arrays.asList("MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN",
|
||||||
"BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY",
|
"BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY",
|
||||||
"CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE",
|
"CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE",
|
||||||
"CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS",
|
"CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS",
|
||||||
@@ -436,5 +436,5 @@ public class Problem22 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The answer to the question is 871198282
|
The answer to the question is 871198282
|
||||||
It took 14.675 milliseconds to run this algorithm
|
It took 17.822 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -80,7 +80,7 @@ public class Problem23 extends Problem{
|
|||||||
result = String.format("The answer is %d\n", sum);
|
result = String.format("The answer is %d\n", sum);
|
||||||
}
|
}
|
||||||
//A function that returns true if num can be created by adding two elements from abund and false if it cannot
|
//A function that returns true if num can be created by adding two elements from abund and false if it cannot
|
||||||
private static Boolean isSum(final ArrayList<Integer> abund, Integer num){
|
private Boolean isSum(final ArrayList<Integer> abund, Integer num){
|
||||||
Integer sum = 0;
|
Integer sum = 0;
|
||||||
//Pick a number for the first part of the sum
|
//Pick a number for the first part of the sum
|
||||||
for(Integer firstNum = 0;firstNum < abund.size();++firstNum){
|
for(Integer firstNum = 0;firstNum < abund.size();++firstNum){
|
||||||
@@ -102,5 +102,5 @@ public class Problem23 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The answer is 4179871
|
The answer is 4179871
|
||||||
It took 75.846 seconds to run this algorithm
|
It took 49.791 seconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -55,5 +55,5 @@ public class Problem24 extends Problem{
|
|||||||
|
|
||||||
/* Results
|
/* Results
|
||||||
The 1 millionth permutation is 2783915460
|
The 1 millionth permutation is 2783915460
|
||||||
It took 1.503 seconds to run this algorithm
|
It took 1.844 seconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -60,5 +60,5 @@ public class Problem25 extends Problem{
|
|||||||
/* Results:
|
/* Results:
|
||||||
The first Fibonacci number with 1000 digits is 1070066266382758936764980584457396885083683896632151665013235203375314520604694040621889147582489792657804694888177591957484336466672569959512996030461262748092482186144069433051234774442750273781753087579391666192149259186759553966422837148943113074699503439547001985432609723067290192870526447243726117715821825548491120525013201478612965931381792235559657452039506137551467837543229119602129934048260706175397706847068202895486902666185435124521900369480641357447470911707619766945691070098024393439617474103736912503231365532164773697023167755051595173518460579954919410967778373229665796581646513903488154256310184224190259846088000110186255550245493937113651657039447629584714548523425950428582425306083544435428212611008992863795048006894330309773217834864543113205765659868456288616808718693835297350643986297640660000723562917905207051164077614812491885830945940566688339109350944456576357666151619317753792891661581327159616877487983821820492520348473874384736771934512787029218636250627816
|
The first Fibonacci number with 1000 digits is 1070066266382758936764980584457396885083683896632151665013235203375314520604694040621889147582489792657804694888177591957484336466672569959512996030461262748092482186144069433051234774442750273781753087579391666192149259186759553966422837148943113074699503439547001985432609723067290192870526447243726117715821825548491120525013201478612965931381792235559657452039506137551467837543229119602129934048260706175397706847068202895486902666185435124521900369480641357447470911707619766945691070098024393439617474103736912503231365532164773697023167755051595173518460579954919410967778373229665796581646513903488154256310184224190259846088000110186255550245493937113651657039447629584714548523425950428582425306083544435428212611008992863795048006894330309773217834864543113205765659868456288616808718693835297350643986297640660000723562917905207051164077614812491885830945940566688339109350944456576357666151619317753792891661581327159616877487983821820492520348473874384736771934512787029218636250627816
|
||||||
Its index is 4782
|
Its index is 4782
|
||||||
It took 1.182 seconds to run this algorithm
|
It took 1.051 seconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -93,5 +93,5 @@ public class Problem26 extends Problem{
|
|||||||
/* Results:
|
/* Results:
|
||||||
The longest cycle is 982 digits long
|
The longest cycle is 982 digits long
|
||||||
It started with the number 983
|
It started with the number 983
|
||||||
It took 41.482 milliseconds to run this algorithm
|
It took 28.969 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -30,13 +30,13 @@ import java.util.ArrayList;
|
|||||||
|
|
||||||
public class Problem27 extends Problem{
|
public class Problem27 extends Problem{
|
||||||
//The A for the most n's generated
|
//The A for the most n's generated
|
||||||
private static Integer topA = 0;
|
private Integer topA = 0;
|
||||||
//The B for the most n's generated
|
//The B for the most n's generated
|
||||||
private static Integer topB = 0;
|
private Integer topB = 0;
|
||||||
//The most n's generated
|
//The most n's generated
|
||||||
private static Integer topN = 0;
|
private Integer topN = 0;
|
||||||
//A list of all primes that could possibly be generated with this formula
|
//A list of all primes that could possibly be generated with this formula
|
||||||
private static ArrayList<Integer> primes = Algorithms.getPrimes(12000);
|
private ArrayList<Integer> primes = Algorithms.getPrimes(12000);
|
||||||
|
|
||||||
public Problem27(){
|
public Problem27(){
|
||||||
super("Find the product of the coefficients, |a| < 1000 and |b| <= 1000, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0");
|
super("Find the product of the coefficients, |a| < 1000 and |b| <= 1000, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0");
|
||||||
@@ -79,5 +79,5 @@ public class Problem27 extends Problem{
|
|||||||
The greatest number of primes found is 70
|
The greatest number of primes found is 70
|
||||||
It was found with A = -61, B = 971
|
It was found with A = -61, B = 971
|
||||||
The product of A and B is -59231
|
The product of A and B is -59231
|
||||||
It took 4.765 seconds to run this algorithm
|
It took 4.772 seconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -30,7 +30,7 @@ public class Problem28 extends Problem{
|
|||||||
//Holds the grid that we will be filling and searching
|
//Holds the grid that we will be filling and searching
|
||||||
private static ArrayList<ArrayList<Integer>> grid;
|
private static ArrayList<ArrayList<Integer>> grid;
|
||||||
//Holds the sum of the diagonals of the grid
|
//Holds the sum of the diagonals of the grid
|
||||||
private static Integer sumOfDiagonals = 0;
|
private Integer sumOfDiagonals = 0;
|
||||||
|
|
||||||
public Problem28(){
|
public Problem28(){
|
||||||
super("What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed by starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral");
|
super("What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed by starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral");
|
||||||
@@ -127,5 +127,5 @@ public class Problem28 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The sum of the diagonals in the given grid is 669171001
|
The sum of the diagonals in the given grid is 669171001
|
||||||
It took 158.348 milliseconds to run this algorithm
|
It took 84.535 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -37,7 +37,7 @@ public class Problem29 extends Problem{
|
|||||||
//The highest possible value for b
|
//The highest possible value for b
|
||||||
private static final Integer TOP_B = 100;
|
private static final Integer TOP_B = 100;
|
||||||
//Holds all unique values generated
|
//Holds all unique values generated
|
||||||
private static ArrayList<BigInteger> unique;
|
private ArrayList<BigInteger> unique;
|
||||||
|
|
||||||
public Problem29(){
|
public Problem29(){
|
||||||
super("How many distinct terms are in the sequence generated by a^b for 2 <= a <= 100 and 2 <= b <= 100?");
|
super("How many distinct terms are in the sequence generated by a^b for 2 <= a <= 100 and 2 <= b <= 100?");
|
||||||
@@ -72,5 +72,5 @@ public class Problem29 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The number of unique values generated by a^b for 2 <= a <= 100 and 2 <= b <= 100 is 9183
|
The number of unique values generated by a^b for 2 <= a <= 100 and 2 <= b <= 100 is 9183
|
||||||
It took 258.922 milliseconds to run this algorithm
|
It took 125.133 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -54,5 +54,5 @@ public class Problem3 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The largest factor of the number 600851475143 is 6857
|
The largest factor of the number 600851475143 is 6857
|
||||||
It took 674.398 milliseconds to run this algorithm
|
It took 337.600 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -93,5 +93,5 @@ public class Problem30 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The sum of all the numbers that can be written as the sum of the fifth powers of their digits is 443839
|
The sum of all the numbers that can be written as the sum of the fifth powers of their digits is 443839
|
||||||
It took 478.387 milliseconds to run this algorithm
|
It took 307.629 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -74,5 +74,5 @@ public class Problem4 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The largest palindrome is 906609
|
The largest palindrome is 906609
|
||||||
It took 105.376 milliseconds to run this algorithm
|
It took 47.490 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -61,5 +61,5 @@ public class Problem5 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The smallest positive number evenly divisibly by all number 1-20 is 232792560
|
The smallest positive number evenly divisibly by all number 1-20 is 232792560
|
||||||
It took 1.987 seconds to run this algorithm
|
It took 393.616 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -58,5 +58,5 @@ public class Problem6 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The difference between the sum of the squares and the square of the sum of all numbers from 1-100 is 25164150
|
The difference between the sum of the squares and the square of the sum of all numbers from 1-100 is 25164150
|
||||||
It took 466.115 microseconds to run this algorithm
|
It took 51.999 microseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -334,5 +334,5 @@ public class Problem67 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The value of the longest path is 7273
|
The value of the longest path is 7273
|
||||||
It took 3.736 seconds to run this algorithm
|
It took 0.000 nanoseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -53,5 +53,5 @@ public class Problem7 extends Problem{
|
|||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
The 10001th prime number is 104743
|
The 10001th prime number is 104743
|
||||||
It took 142.783 milliseconds to run this algorithm
|
It took 43.496 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -82,5 +82,5 @@ public class Problem8 extends Problem{
|
|||||||
/* Results:
|
/* Results:
|
||||||
The greatest product is 23514624000
|
The greatest product is 23514624000
|
||||||
The numbers are 5576689664895
|
The numbers are 5576689664895
|
||||||
It took 8.069 milliseconds to run this algorithm
|
It took 2.901 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
@@ -71,5 +71,7 @@ public class Problem9 extends Problem{
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* Results:
|
/* Results:
|
||||||
|
The Pythagorean triplet is 200 + 375 + 425
|
||||||
|
The numbers' product is 31875000
|
||||||
|
It took 12.971 milliseconds to solve this problem.
|
||||||
*/
|
*/
|
||||||
|
|||||||
Reference in New Issue
Block a user