//ProjectEuler/Java/Problem25.java //Matthew Ellison // Created: 03-25-19 //Modified: 03-28-19 //What is the index of the first term in the Fibonacci sequence to contain 1000 digits? //Unless otherwise listed all non-standard includes are my own creation and available from https://bibucket.org/Mattrixwv/JavaClasses /* Copyright (C) 2019 Matthew Ellison This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ import mattrixwv.Stopwatch; import mattrixwv.Algorithms; import java.math.BigInteger; public class Problem25{ private static final Integer NUM_DIGITS = 1000; //The number of digits to calculate up to public static void main(String[] args){ //Setup the variables Stopwatch timer = new Stopwatch(); BigInteger number = BigInteger.ZERO; //Holds the current Fibonacci number BigInteger index = BigInteger.valueOf(2L); //The index of the Fibonacci number just calculated //Start the timer timer.start(); //Move through all Fibonacci numbers until you reach the one with at least NUM_DIGITS digits while(number.toString().length() < NUM_DIGITS){ index = index.add(BigInteger.ONE); //Increase the index number. Doing this at the beginning keeps the index correct at the end of the loop number = Algorithms.getFib(index); //Calculate the number } //Stop the timer timer.stop(); //Print the results System.out.printf("The first Fibonacci number with %d digits is %s\n", NUM_DIGITS, number.toString()); System.out.printf("Its index is %d\n", index); System.out.printf("It took %s to run this algorithm\n", timer.getStr()); } } /* Results: The first Fibonacci number with 1000 digits is 1070066266382758936764980584457396885083683896632151665013235203375314520604694040621889147582489792657804694888177591957484336466672569959512996030461262748092482186144069433051234774442750273781753087579391666192149259186759553966422837148943113074699503439547001985432609723067290192870526447243726117715821825548491120525013201478612965931381792235559657452039506137551467837543229119602129934048260706175397706847068202895486902666185435124521900369480641357447470911707619766945691070098024393439617474103736912503231365532164773697023167755051595173518460579954919410967778373229665796581646513903488154256310184224190259846088000110186255550245493937113651657039447629584714548523425950428582425306083544435428212611008992863795048006894330309773217834864543113205765659868456288616808718693835297350643986297640660000723562917905207051164077614812491885830945940566688339109350944456576357666151619317753792891661581327159616877487983821820492520348473874384736771934512787029218636250627816 Its index is 4782 It took 1.182 seconds to run this algorithm */