Files
ProjectEulerJava/Problem23.java

103 lines
3.4 KiB
Java

//ProjectEuler/C++/Problem23.java
//Matthew Ellison
// Created: 03-22-19
//Modified: 03-28-19
//Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers
//Unless otherwise listed all non-standard includes are my own creation and available from https://bibucket.org/Mattrixwv/JavaClasses
/*
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
import mattrixwv.Stopwatch;
import mattrixwv.Algorithms;
import java.util.ArrayList;
public class Problem23{
public static final Integer MAX_NUM = 28123;
public static void main(String[] args){
Stopwatch timer = new Stopwatch();
//Setup the variables
ArrayList<Integer> divisorSums = new ArrayList<Integer>(); //Holds the sum of all the divisors of a number
divisorSums.ensureCapacity(MAX_NUM); //It is faster to reserve the appropriate amount of ram now
//Make sure every element has a 0 in it's location
for(int cnt = 0;cnt < MAX_NUM;++cnt){
divisorSums.add(0);
}
divisorSums.add(0);
//Start the timer
timer.start();
//Get the sum of the divisors of all numbers < MAX_NUM
for(Integer cnt = 1;cnt.compareTo(MAX_NUM) < 0;++cnt){
ArrayList<Integer> div = Algorithms.getDivisors(cnt);
//Remove the last element, which is the number itself. This gives us the propper divisors
if(div.size() > 1){
div.remove(div.size() - 1);
}
divisorSums.set(cnt, Algorithms.getSum(div));
}
//Get the abundant numbers
ArrayList<Integer> abund = new ArrayList<Integer>();
for(Integer cnt = 0;cnt.compareTo(divisorSums.size()) < 0;++cnt){
if(divisorSums.get(cnt) > cnt.longValue()){
abund.add(cnt);
}
}
//Check if each number can be the sum of 2 abundant numbers and add to the sum if no
Long sum = 0L;
for(Integer cnt = 1;cnt.compareTo(MAX_NUM) < 0;++cnt){
if(!isSum(abund, cnt)){
sum += cnt.longValue();
}
}
//Stop the timer
timer.stop();
//Print the results
System.out.printf("The answer is %d\n", sum);
System.out.printf("It took %s to run this algorithm\n", timer.getStr());
}
//A function that returns true if num can be created by adding two elements from abund and false if it cannot
private static Boolean isSum(final ArrayList<Integer> abund, Integer num){
Integer sum = 0;
//Pick a number for the first part of the sum
for(Integer firstNum = 0;firstNum < abund.size();++firstNum){
//Pick a number for the second part of the sum
for(Integer secondNum = firstNum;secondNum < abund.size();++secondNum){
sum = abund.get(firstNum) + abund.get(secondNum);
if(sum.equals(num)){
return true;
}
else if(sum.compareTo(num) > 0){
break;
}
}
}
//If you have run through the entire list and did not find a sum then it is false
return false;
}
}
/* Results:
The answer is 4179871
It took 75.846 seconds to run this algorithm
*/