mirror of
https://bitbucket.org/Mattrixwv/projecteulerlua.git
synced 2025-12-06 17:43:57 -05:00
Created solution to problem32
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
--Matthew Ellison
|
||||
-- Created: 09-15-19
|
||||
--Modified: 06-19-20
|
||||
--Find the product of the coefficients, |a| < 1000 and |b| <= 1000, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.
|
||||
--What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed by starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral
|
||||
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
|
||||
--[[
|
||||
Copyright (C) 2020 Matthew Ellison
|
||||
|
||||
107
Problem32.lua
Normal file
107
Problem32.lua
Normal file
@@ -0,0 +1,107 @@
|
||||
--ProjectEuler/ProjectEulerLua/Problem32.lua
|
||||
-- Created: 07-28-20
|
||||
--Modified: 07-28-20
|
||||
--Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.
|
||||
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
|
||||
--[[
|
||||
Copyright (C) 2020 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
]]
|
||||
|
||||
|
||||
require "Stopwatch"
|
||||
|
||||
|
||||
--Setup the variables
|
||||
local timer = Stopwatch:create();
|
||||
local topMultiplicand = 99; --The largest multiplicand to check
|
||||
local topMultiplier = 4999; --The largest multiplier to check
|
||||
local listOfProducts = {}; --The list of unique products that are 1-9 pandigital
|
||||
local sumOfPandigitals = 0; --The sum of the products of the pandigital numbers
|
||||
|
||||
--Functions
|
||||
local function getProduct(currentSet)
|
||||
return currentSet.multiplicand * currentSet.multiplier;
|
||||
end
|
||||
local function getNumString(currentSet)
|
||||
return tostring(currentSet.multiplicand)..tostring(currentSet.multiplier)..tostring(getProduct(currentSet));
|
||||
end
|
||||
local function isPandigital(currentSet)
|
||||
--Get the number out of the object and put them into a string
|
||||
local numberString = getNumString(currentSet);
|
||||
--Make sure the string is the correct length
|
||||
if(#numberString ~= 9) then
|
||||
return false;
|
||||
end
|
||||
--Make sure there is exactly one of this number contained in the string
|
||||
for panNumber=1,9 do
|
||||
--Make sure there is exactly one of this number contained in the string
|
||||
local _, count = string.gsub(numberString, tostring(panNumber), tostring(panNumber));
|
||||
if(count ~= 1) then
|
||||
return false;
|
||||
end
|
||||
end
|
||||
--If all numbers wer found in the string return true
|
||||
return true;
|
||||
end
|
||||
--Returns true if the product of the currentSet is in the table
|
||||
local function productInTable(currentSet)
|
||||
for set=1,#listOfProducts do
|
||||
if(getProduct(listOfProducts[set]) == getProduct(currentSet)) then
|
||||
return true;
|
||||
end
|
||||
end
|
||||
return false;
|
||||
end
|
||||
|
||||
--Start the timer
|
||||
timer:start();
|
||||
|
||||
--Create the multiplicand and start working your way up
|
||||
for multiplicand=1,topMultiplicand do
|
||||
--Run through all possible multipliers
|
||||
for multiplier=multiplicand,topMultiplier do
|
||||
local currentProductSet = {multiplicand = multiplicand, multiplier = multiplier};
|
||||
--If the product is too long move on to the next possible number
|
||||
if(#getNumString(currentProductSet) > 9) then
|
||||
break;
|
||||
end
|
||||
--If the current number is a pandigital that doesn't already exist in the list add it
|
||||
if(isPandigital(currentProductSet)) then
|
||||
if(not productInTable(currentProductSet)) then
|
||||
table.insert(listOfProducts, currentProductSet);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
--Get the sum of the products of the pandigitals
|
||||
for prod=1,#listOfProducts do
|
||||
sumOfPandigitals = sumOfPandigitals + getProduct(listOfProducts[prod]);
|
||||
end
|
||||
|
||||
--Stop the timer
|
||||
timer:stop();
|
||||
|
||||
--Print the results
|
||||
io.write("There are " .. #listOfProducts .. " unique 1-9 pandigitals\n");
|
||||
io.write("The sum of the products of these pandigitals is " .. sumOfPandigitals .. '\n');
|
||||
io.write("It took " .. timer:getString() .. " to run this algorithm\n");
|
||||
|
||||
--[[ Results:
|
||||
There are 7 unique 1-9 pandigitals
|
||||
The sum of the products of these pandigitals is 45228
|
||||
It took 100.000 milliseconds to run this algorithm
|
||||
]]
|
||||
Reference in New Issue
Block a user