--ProjectEuler/ProjectEulerLua/Problem35.lua --Matthew Ellison -- Created: 06-05-21 --Modified: 06-05-21 --How many circular primes are there below one million? --All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses --[[ Copyright (C) 2021 Matthew Ellison This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . ]] require "Stopwatch" require "Algorithms" --Setup the variables local timer = Stopwatch:create(); local MAX_NUM = 999999; --The largest number that we are checking for primes local primes = {}; --The primes below MAX_NUM local circularPrimes = {}; --The circular primes below MAX_NUM --Functions --Returns a list of all rotations of a string passed to it local function getRotations(str) local rotations = {}; table.insert(rotations, str); for cnt = 1, string.len(str) - 1 do str = string.sub(str, 2) .. string.sub(str, 1, 1); table.insert(rotations, str); end return rotations; end --Start the timer timer:start(); --Get all primes under 1,000,000 primes = getPrimes(MAX_NUM); --Go through all primes, get all their rotations, and check if those numbers are also primes for cnt = 1, #primes do local prime = primes[cnt]; local allRotationsPrime = true; --Get all of the rotations of the prime and see if they are also prime local rotations = getRotations(tostring(prime)); for rotCnt = 1, #rotations do local rotation = rotations[rotCnt]; local p = tonumber(rotation, 10); if(not isFound(primes, p)) then allRotationsPrime = false; break; end end --If all rotations are prime add it to the list of circular primes if(allRotationsPrime) then table.insert(circularPrimes, prime); end end --Stop the timer timer:stop(); --Print the results io.write("The number of all circular prime numbers under " .. MAX_NUM .. " is " .. #circularPrimes .. "\n"); io.write("It took " .. timer:getString() .. " to run this algorithm\n"); --[[ Results: The number of all circular prime numbers under 999999 is 55 It took 102.268 seconds to run this algorithm ]]