mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 17:43:57 -05:00
Initial commit with existing files
This commit is contained in:
128
Problem23.m
Normal file
128
Problem23.m
Normal file
@@ -0,0 +1,128 @@
|
||||
function [] = Problem23()
|
||||
%ProjectEuler/Octave/Problem23.m
|
||||
%Matthew Ellison
|
||||
% Created: 03-22-19
|
||||
%Modified: 03-28-19
|
||||
%Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers
|
||||
%{
|
||||
Copyright (C) 2019 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%}
|
||||
|
||||
|
||||
MAX_NUM = 28123; %The highest number that will be evaluated
|
||||
|
||||
|
||||
%Setup the variables
|
||||
divisorSums = [];
|
||||
%Make sure every element has a 0 in it's location
|
||||
for cnt = 1 : MAX_NUM
|
||||
divisorSums(end + 1) = 0;
|
||||
end
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
|
||||
%Get the sum of the divisors of all numbers < MAX_NUM
|
||||
for cnt = 1 : MAX_NUM
|
||||
div = getDivisors(cnt);
|
||||
if(size(div)(2) > 1)
|
||||
div(end) = [];
|
||||
end
|
||||
divisorSums(cnt) = sum(div);
|
||||
end
|
||||
|
||||
%Get the abundant numbers
|
||||
abund = [];
|
||||
for cnt = 1 : size(divisorSums)(2)
|
||||
if(divisorSums(cnt) > cnt)
|
||||
abund(end + 1) = cnt;
|
||||
end
|
||||
end
|
||||
|
||||
%Check if each number can be the sum of 2 abundant numbers and add to the sum if no
|
||||
sumOfNums = 0;
|
||||
for cnt = 1 : MAX_NUM
|
||||
if(~isSum(abund, cnt))
|
||||
printf("Added %d to sum\n", cnt)
|
||||
sumOfNums += cnt;
|
||||
end
|
||||
end
|
||||
|
||||
%Stop the timer
|
||||
endTime = clock();
|
||||
|
||||
%Print the results
|
||||
printf("The answer is %d\n", sumOfNums)
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
|
||||
end %Problem23
|
||||
|
||||
function [divisors] = getDivisors(goalNumber)
|
||||
divisors = [];
|
||||
%Start by checking that the number is positive
|
||||
if(goalNumber <= 0)
|
||||
return;
|
||||
%If the number is 1 return just itself
|
||||
elseif(goalNumber == 1)
|
||||
divisors(end + 1) = 1;
|
||||
return;
|
||||
end
|
||||
|
||||
%Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
||||
topPossibleDivisor = ceil(sqrt(goalNumber));
|
||||
possibleDivisor = 1;
|
||||
while(possibleDivisor <= topPossibleDivisor)
|
||||
%If you find one add it and the number it creates to the list
|
||||
if(mod(goalNumber, possibleDivisor) == 0)
|
||||
divisors(end + 1) = possibleDivisor;
|
||||
%Account for the possibility sqrt(goalNumber) being a divisor
|
||||
if(possibleDivisor != topPossibleDivisor)
|
||||
divisors(end + 1) = goalNumber / possibleDivisor;
|
||||
end
|
||||
%Take care of a few occations where a number was added twice
|
||||
if(divisors(end) == (possibleDivisor + 1))
|
||||
possibleDivisor += 1;
|
||||
end
|
||||
end
|
||||
possibleDivisor += 1;
|
||||
end
|
||||
|
||||
%Sort the list before returning for neatness
|
||||
divisors = sort(divisors);
|
||||
end
|
||||
|
||||
function [answer] = isSum(abund, num)
|
||||
sumOfNums = 0;
|
||||
%Pick a number for the first part of the sum
|
||||
for firstNum = 1 : size(abund)(2)
|
||||
%Pick a number for the second part of the sum
|
||||
for secondNum = firstNum : size(abund)(2)
|
||||
sumOfNums = abund(firstNum) + abund(secondNum);
|
||||
if(sumOfNums == num)
|
||||
answer = true;
|
||||
return;
|
||||
elseif(sumOfNums > num)
|
||||
break;
|
||||
end
|
||||
end
|
||||
end
|
||||
answer = false;
|
||||
end
|
||||
|
||||
%{
|
||||
Results: I let this run for 11 hours and did not come up with a result. I added some tracking and tested again and it seems like it is doing what it is supposed to and will come to the correct answer... eventually
|
||||
However, for now, this remains unproven.
|
||||
%}
|
||||
Reference in New Issue
Block a user