mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 17:43:57 -05:00
Initial commit with existing files
This commit is contained in:
87
Problem27.m
Normal file
87
Problem27.m
Normal file
@@ -0,0 +1,87 @@
|
||||
function [] = Problem27()
|
||||
%ProjectEuler/Octave/Problem27.m
|
||||
%Matthew Ellison
|
||||
% Created: 09-15-19
|
||||
%Modified: 09-15-19
|
||||
%Find the product of the coefficients, |a| < 1000 and |b| <= 1000, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.
|
||||
%{
|
||||
Copyright (C) 2019 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%}
|
||||
|
||||
|
||||
%Setup variables
|
||||
topA = 0;
|
||||
topB = 0;
|
||||
topN = 0;
|
||||
primeNums = primes(12000);
|
||||
|
||||
%Start timer
|
||||
startTime = clock();
|
||||
|
||||
|
||||
%Start with the lowest possible A and check all possibilities after that
|
||||
for a = -999 : 999
|
||||
%Start with the lowest possible B and check all possibilities after that
|
||||
for b = -1000 : 1000
|
||||
%Start with n=0 and check the formula to see how many primes you can get get with concecutive n's
|
||||
n = 0;
|
||||
quadratic = (n * n) + (a * n) + b;
|
||||
while(isFound(primeNums, quadratic))
|
||||
++n;
|
||||
quadratic = (n * n) + (a * n) + b;
|
||||
end
|
||||
--n;
|
||||
|
||||
%Set all the largest number if this creaed more primes than any other
|
||||
if(n > topN)
|
||||
topN = n;
|
||||
topB = b;
|
||||
topA = a;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
%End the timer
|
||||
endTime = clock();
|
||||
|
||||
%Print the results
|
||||
printf("The greatest number of primes found is %d", topN)
|
||||
printf("\nIt was found with A = %d, B = %d", topA, topB)
|
||||
printf("\nThe product of A and B is %d\n", topA * topB)
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
|
||||
end
|
||||
|
||||
function [found] = isFound(array, key)
|
||||
found = false; %Start with a false. It only turns true if you find key in array
|
||||
for location = 1 : size(array)(2)
|
||||
if(key < array(location))
|
||||
return;
|
||||
elseif(key == array(location))
|
||||
found = true;
|
||||
return;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%{
|
||||
Results:
|
||||
The greatest number of primes found is 70
|
||||
It was found with A = -61, B = 971
|
||||
The product of A and B is -59231
|
||||
It took 1298.651146 seconds to run this algorithm
|
||||
%}
|
||||
Reference in New Issue
Block a user