mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 17:43:57 -05:00
Added solution to problem 37
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
function [] = Problem36()
|
||||
%ProjectEuler/ProjectEulerOctave/Problem36.lua
|
||||
%ProjectEuler/ProjectEulerOctave/Problem36.m
|
||||
%Matthew Ellison
|
||||
% Created: 06-29-21
|
||||
%Modified: 06-29-21
|
||||
|
||||
103
Problem37.m
Normal file
103
Problem37.m
Normal file
@@ -0,0 +1,103 @@
|
||||
function [] = Problem37()
|
||||
%ProjectEuler/ProjectEulerOctave/Problem37.m
|
||||
%Matthew Ellison
|
||||
% Created: 07-01-21
|
||||
%Modified: 07-01-21
|
||||
%Find the sum of the only eleven primes that are both truncatable from left to right and right to left (2, 3, 5, and 7 are not counted).
|
||||
%{
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%}
|
||||
|
||||
%Setup the variables
|
||||
truncPrimes = []; %All numbers that are truncatable primes
|
||||
sumOfTrunc = 0; %The sum of all elements in truncPrimes
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
|
||||
%Get all the primes up to a max number
|
||||
primeList = primes(750000);
|
||||
%primeList = primes(30);
|
||||
for loc = 5 : size(primeList)(2)
|
||||
currentPrime = primeList(loc);
|
||||
isTruncPrime = true;
|
||||
%Convert the prime to a string
|
||||
primeString = num2str(currentPrime);
|
||||
%If the string contains an even digit move to the next prime
|
||||
strLoc = 1;
|
||||
while((strLoc <= size(primeString)(2)) && (isTruncPrime))
|
||||
ch = primeString(strLoc);
|
||||
%Allow 2 to be the first digit
|
||||
if((strLoc == 1) && (ch == '2'))
|
||||
strLoc = strLoc;
|
||||
else
|
||||
if((ch == '0') || (ch == '2') || (ch == '4') || (ch == '6') || (ch == '8'))
|
||||
isTruncPrime = false;
|
||||
end
|
||||
end
|
||||
++strLoc;
|
||||
end
|
||||
%Start removing digits from the left and see if the number stays prime
|
||||
if(isTruncPrime)
|
||||
for truncLoc = 2 : size(primeString)(2)
|
||||
%Create a substring of the prime, removing the needed digits frome the left
|
||||
primeSubstring = substr(primeString, truncLoc);
|
||||
%Convert the string to an int and see if the number is still prime
|
||||
newPrime = str2num(primeSubstring);
|
||||
if(~isprime(newPrime))
|
||||
isTruncPrime = false;
|
||||
break;
|
||||
end
|
||||
end
|
||||
end
|
||||
%Start removing digits from the right and see if the number stays prime
|
||||
if(isTruncPrime)
|
||||
for truncLoc = 1 : size(primeString)(2) - 1
|
||||
%Create a substring of the prime, removing the needed digits from the right
|
||||
primeSubstring = substr(primeString, 1, size(primeString)(2) - truncLoc);
|
||||
%Convert the string to an int and see if the number is still a prime
|
||||
newPrime = str2num(primeSubstring);
|
||||
if(~isprime(newPrime))
|
||||
isTruncPrime = false;
|
||||
break;
|
||||
end
|
||||
end
|
||||
end
|
||||
%If the number remained prime through all operations add it to the table
|
||||
if(isTruncPrime)
|
||||
truncPrimes(end + 1) = currentPrime;
|
||||
end
|
||||
%End the loop if we have collected enough primes
|
||||
if(size(truncPrimes)(2) == 11)
|
||||
break;
|
||||
end
|
||||
end
|
||||
%Get the sum of all elements in the truncPrimes vector
|
||||
sumOfTrunc = sum(truncPrimes);
|
||||
|
||||
%Stop the timer
|
||||
endTime = clock();
|
||||
|
||||
%print the results
|
||||
printf("The sum of all left and right truncatable primes is %d\n", sumOfTrunc);
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
|
||||
end
|
||||
|
||||
%{
|
||||
The sum of all left and right truncatable primes is 748317
|
||||
It took 38.635521 seconds to run this algorithm
|
||||
%}
|
||||
Reference in New Issue
Block a user