#Project Euler/Python/Problem8.py #Matthew Ellison # Created: 01-29-19 #Modified: 07-18-20 #Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? """ 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 """ #Unless otherwise listed, all of my non-standard imports can be gotten from my pyClasses repository at https://bitbucket.org/Mattrixwv/pyClasses """ Copyright (C) 2020 Matthew Ellison This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . """ from Problems.Problem import Problem from Stopwatch import Stopwatch from Unsolved import Unsolved class Problem8(Problem): #Variables #The number __number = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450" #Functions #Constructor def __init__(self): super().__init__("Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?") self.maxNums = "" #Holds the string of the largest product self.maxProduct = 0 #Holds the largest product of 13 numbers #Operational functions #Solve the problem def solve(self): #If the problem has already been solved do nothing and end the function if(self.solved): return #Start the timer self.timer.start() #Start at the 13th entry and multiply all single digit numbers before and including that number together cnt = 12 #The location in the number that you are working from for cnt in range(12, len(self.__number)): currentProduct = int(self.__number[cnt]) * int(self.__number[cnt - 1]) * int(self.__number[cnt - 2]) * int(self.__number[cnt - 3]) * int(self.__number[cnt - 4]) * int(self.__number[cnt - 5]) * int(self.__number[cnt - 6]) * int(self.__number[cnt - 7]) * int(self.__number[cnt - 8]) * int(self.__number[cnt - 9]) * int(self.__number[cnt - 10]) * int(self.__number[cnt - 11]) * int(self.__number[cnt - 12]) #Save the largest product if(currentProduct > self.maxProduct): self.maxProduct = currentProduct self.maxNums = self.__number[cnt - 12:cnt + 1] #Have to add one because it stops before the second subscript #Move to the next location cnt += 1 #Stop the timer self.timer.stop #Save the results self.result = "The largest product of 13 adjacent digits in the number is " + str(self.maxProduct) + "\nThe numbers are: " + self.maxNums #Throw a flag to show the problem is solved self.solved = True #Reset the problem so it can be run again def reset(self): super().reset() maxNums = "" maxProduct = 0 #Gets #Returns the string of number that produces the largest product def getLargestNums(self) -> str: #If the problem hasn't been solved throw an exception if(not self.solved): raise Unsolved("You must solve the problem before you can get the nums the produce the largest product") return self.maxNums #Returns the requested product def getLargestProduct(self) -> int: #If the problem hasn't been solved throw an exception if(not self.solved): raise Unsolved("You must solve the problem before you can get the requested product") return self.maxProduct #If you are running this file, automatically start the correct function if __name__ == '__main__': problem = Problem8() print(problem.getDescription()) #Print the description of the problem problem.solve() #Solve the problem #Print the results print(problem.getResult()) print("It took " + problem.getTime() + " to solve this algorithm") """Results: The largest product of 13 adjacent digits in the number is 23514624000 The numbers are: 5576689664895 It took an average of 2.024 milliseconds to run this problem through 100 iterations """