mirror of
https://bitbucket.org/Mattrixwv/javaclasses.git
synced 2025-12-06 15:03:58 -05:00
Updated more sonarqube findings
This commit is contained in:
@@ -23,6 +23,8 @@ package mattrixwv;
|
||||
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.StringJoiner;
|
||||
|
||||
|
||||
@@ -125,4 +127,12 @@ public class ArrayAlgorithms{
|
||||
}
|
||||
return returnString.toString();
|
||||
}
|
||||
//Convert lists
|
||||
public static List<Integer> longToInt(List<Long> originalList){
|
||||
ArrayList<Integer> newList = new ArrayList<>(originalList.size());
|
||||
for(Long num : originalList){
|
||||
newList.add(num.intValue());
|
||||
}
|
||||
return newList;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -40,45 +40,10 @@ public class NumberAlgorithms{
|
||||
}
|
||||
|
||||
//This function returns a list with all the prime numbers <= goalNumber
|
||||
public static List<Integer> getPrimes(Integer goalNumber){
|
||||
ArrayList<Integer> primes = new ArrayList<>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(goalNumber <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(2);
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
for(int possiblePrime = 3;possiblePrime <= goalNumber;possiblePrime += 2){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;(primesCnt < primes.size()) && (primes.get(primesCnt) <= topPossibleFactor.intValue());++primesCnt){
|
||||
if((possiblePrime % primes.get(primesCnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
public static List<Integer> getPrimes(int goalNumber){
|
||||
return ArrayAlgorithms.longToInt(getPrimes((long) goalNumber));
|
||||
}
|
||||
public static List<Long> getPrimes(Long goalNumber){
|
||||
public static List<Long> getPrimes(long goalNumber){
|
||||
ArrayList<Long> primes = new ArrayList<>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
@@ -157,45 +122,10 @@ public class NumberAlgorithms{
|
||||
|
||||
|
||||
//This function gets a certain number of primes
|
||||
public static List<Integer> getNumPrimes(Integer numberOfPrimes){
|
||||
ArrayList<Integer> primes = new ArrayList<>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
//If the number is 0 or negative return an empty list
|
||||
if(numberOfPrimes <= 1){
|
||||
return primes;
|
||||
}
|
||||
//Otherwise the number is at least 2, so 2 should be added to the list
|
||||
else{
|
||||
primes.add(2);
|
||||
}
|
||||
|
||||
//We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
for(int possiblePrime = 3;primes.size() < numberOfPrimes;possiblePrime += 2){
|
||||
//Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
Double topPossibleFactor = Math.ceil(Math.sqrt(possiblePrime));
|
||||
//We can safely assume that there will be at least 1 element in the primes list because of 2 being added before this
|
||||
for(int primesCnt = 0;(primesCnt < primes.size()) && (primes.get(primesCnt) <= topPossibleFactor.intValue());++primesCnt){
|
||||
if((possiblePrime % primes.get(primesCnt)) == 0){
|
||||
foundFactor = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't find a factor then the current number must be prime
|
||||
if(!foundFactor){
|
||||
primes.add(possiblePrime);
|
||||
}
|
||||
else{
|
||||
foundFactor = false;
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the list before returning it
|
||||
Collections.sort(primes);
|
||||
return primes;
|
||||
public static List<Integer> getNumPrimes(int numberOfPrimes){
|
||||
return ArrayAlgorithms.longToInt(getNumPrimes((long)numberOfPrimes));
|
||||
}
|
||||
public static List<Long> getNumPrimes(Long numberOfPrimes){
|
||||
public static List<Long> getNumPrimes(long numberOfPrimes){
|
||||
ArrayList<Long> primes = new ArrayList<>(); //Holds the prime numbers
|
||||
boolean foundFactor = false; //A flag for whether a factor of the current number has been found
|
||||
|
||||
@@ -274,20 +204,6 @@ public class NumberAlgorithms{
|
||||
|
||||
|
||||
//This function return true if the value passed to it is prime
|
||||
public static boolean isPrime(int possiblePrime){
|
||||
if(possiblePrime <= 3){
|
||||
return possiblePrime > 1;
|
||||
}
|
||||
else if(((possiblePrime % 2) == 0) || ((possiblePrime % 3) == 0)){
|
||||
return false;
|
||||
}
|
||||
for(int cnt = 5;(cnt * cnt) <= possiblePrime;cnt += 6){
|
||||
if(((possiblePrime % cnt) == 0) || ((possiblePrime % (cnt + 2)) == 0)){
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
public static boolean isPrime(long possiblePrime){
|
||||
if(possiblePrime <= 3){
|
||||
return possiblePrime > 1;
|
||||
@@ -319,41 +235,10 @@ public class NumberAlgorithms{
|
||||
|
||||
|
||||
//This function returns all factors of goalNumber
|
||||
public static List<Integer> getFactors(Integer goalNumber) throws InvalidResult{
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
Double topPossiblePrime = Math.ceil(Math.sqrt(goalNumber));
|
||||
List<Integer> primes = getPrimes(topPossiblePrime.intValue());
|
||||
ArrayList<Integer> factors = new ArrayList<>();
|
||||
|
||||
//You need to step through each prime and see if it is a factor in the number
|
||||
for(int cnt = 0;cnt < primes.size();){
|
||||
//If the prime is a factor you need to add it to the factor list
|
||||
if((goalNumber % primes.get(cnt)) == 0){
|
||||
factors.add(primes.get(cnt));
|
||||
goalNumber /= primes.get(cnt);
|
||||
}
|
||||
//Otherwise advance the location in primes you are looking at
|
||||
//By not advancing if the prime is a factor you allow for multiple of the same prime number as a factor
|
||||
else{
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
|
||||
//If you didn't get any factors the number itself must be a prime
|
||||
if(factors.isEmpty()){
|
||||
factors.add(goalNumber);
|
||||
goalNumber /= goalNumber;
|
||||
}
|
||||
|
||||
//If for some reason the goalNumber is not 1 throw an error
|
||||
if(goalNumber != 1){
|
||||
throw new InvalidResult("The factor was not 1: " + goalNumber);
|
||||
}
|
||||
|
||||
//Return the list of factors
|
||||
return factors;
|
||||
public static List<Integer> getFactors(int goalNumber) throws InvalidResult{
|
||||
return ArrayAlgorithms.longToInt(getFactors((long)goalNumber));
|
||||
}
|
||||
public static List<Long> getFactors(Long goalNumber) throws InvalidResult{
|
||||
public static List<Long> getFactors(long goalNumber) throws InvalidResult{
|
||||
//You need to get all the primes that could be factors of this number so you can test them
|
||||
Double topPossiblePrime = Math.ceil(Math.sqrt(goalNumber));
|
||||
List<Long> primes = getPrimes(topPossiblePrime.longValue());
|
||||
@@ -424,36 +309,10 @@ public class NumberAlgorithms{
|
||||
|
||||
|
||||
//This function returns all the divisors of goalNumber
|
||||
public static List<Integer> getDivisors(Integer goalNumber){
|
||||
HashSet<Integer> divisors = new HashSet<>();
|
||||
//Start by checking that the number is positive
|
||||
if(goalNumber <= 0){
|
||||
return new ArrayList<>();
|
||||
}
|
||||
else{
|
||||
divisors.add(1);
|
||||
divisors.add(goalNumber);
|
||||
}
|
||||
|
||||
//Start at 3 and loop through all numbers < sqrt(goalNumber) looking for a number that divides it evenly
|
||||
Double topPossibleDivisor = Math.ceil(Math.sqrt(goalNumber));
|
||||
for(int possibleDivisor = 2;possibleDivisor <= topPossibleDivisor;++possibleDivisor){
|
||||
//If you find one add it and the number it creates to the list
|
||||
if((goalNumber % possibleDivisor) == 0){
|
||||
int possibleDivisor2 = goalNumber / possibleDivisor;
|
||||
divisors.add(possibleDivisor);
|
||||
divisors.add(possibleDivisor2);
|
||||
}
|
||||
}
|
||||
|
||||
//Convert the set to a list
|
||||
ArrayList<Integer> divisorList = new ArrayList<>(divisors);
|
||||
//Sort the list before returning it for neatness
|
||||
Collections.sort(divisorList);
|
||||
//Return the list
|
||||
return divisorList;
|
||||
public static List<Integer> getDivisors(int goalNumber){
|
||||
return ArrayAlgorithms.longToInt(getDivisors((long)goalNumber));
|
||||
}
|
||||
public static List<Long> getDivisors(Long goalNumber){
|
||||
public static List<Long> getDivisors(long goalNumber){
|
||||
HashSet<Long> divisors = new HashSet<>();
|
||||
//Start by checking that the number is positive
|
||||
if(goalNumber <= 0){
|
||||
@@ -512,22 +371,7 @@ public class NumberAlgorithms{
|
||||
|
||||
//This function returns the goalSubscript'th Fibonacci number
|
||||
public static int getFib(int goalSubscript){
|
||||
//Setup the variables
|
||||
int[] fibNums = {1, 1, 0}; //A list to keep track of the Fibonacci numbers. It need only be 3 long because we only need the one we are working on and the last 2
|
||||
|
||||
//If the number is <= 0 return 0
|
||||
if(goalSubscript <= 0){
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Loop through the list, generating Fibonacci numbers until it finds the correct subscript
|
||||
int fibLoc;
|
||||
for(fibLoc = 2;fibLoc < goalSubscript;++fibLoc){
|
||||
fibNums[fibLoc % 3] = fibNums[(fibLoc - 1) % 3] + fibNums[(fibLoc - 2) % 3];
|
||||
}
|
||||
|
||||
//Return the proper number. The location counter is 1 off of the subscript
|
||||
return fibNums[(fibLoc - 1) % 3];
|
||||
return (int)getFib((long)goalSubscript);
|
||||
}
|
||||
public static long getFib(long goalSubscript){
|
||||
//Setup the variables
|
||||
@@ -567,29 +411,10 @@ public class NumberAlgorithms{
|
||||
}
|
||||
|
||||
//This function returns a list of all Fibonacci numbers <= goalNumber
|
||||
public static List<Integer> getAllFib(Integer goalNumber){
|
||||
//Setup the variables
|
||||
ArrayList<Integer> fibNums = new ArrayList<>(); //A list to save the Fibonacci numbers
|
||||
|
||||
//If the number is <= 0 return an empty list
|
||||
if(goalNumber <= 0){
|
||||
return fibNums;
|
||||
}
|
||||
|
||||
//This means that at least 2 1's are elements
|
||||
fibNums.add(1);
|
||||
fibNums.add(1);
|
||||
|
||||
//Loop to generate the rest of the Fibonacci numbers
|
||||
while(fibNums.get(fibNums.size() - 1) <= goalNumber){
|
||||
fibNums.add(fibNums.get(fibNums.size() - 1) + fibNums.get(fibNums.size() - 2));
|
||||
}
|
||||
|
||||
//At this point the most recent number is > goalNumber, so remove it and return the rest of the list
|
||||
fibNums.remove(fibNums.size() - 1);
|
||||
return fibNums;
|
||||
public static List<Integer> getAllFib(int goalNumber){
|
||||
return ArrayAlgorithms.longToInt(getAllFib((long) goalNumber));
|
||||
}
|
||||
public static List<Long> getAllFib(Long goalNumber){
|
||||
public static List<Long> getAllFib(long goalNumber){
|
||||
//Setup the variables
|
||||
ArrayList<Long> fibNums = new ArrayList<>(); //A list to save the Fibonacci numbers
|
||||
|
||||
@@ -636,18 +461,7 @@ public class NumberAlgorithms{
|
||||
|
||||
//This function returns the factorial of the number passed to it
|
||||
public static int factorial(int num) throws InvalidParameterException{
|
||||
int fact = 1; //The value of the factorial
|
||||
|
||||
//If the number passed in is < 0 throw an exception
|
||||
if(num < 0){
|
||||
throw new InvalidParameterException("n! cannot be negative");
|
||||
}
|
||||
//Loop through every number up to and including num and add the product to the factorial
|
||||
for(int cnt = 2;cnt <= num;++cnt){
|
||||
fact *= cnt;
|
||||
}
|
||||
|
||||
return fact;
|
||||
return (int)factorial((long)num);
|
||||
}
|
||||
public static long factorial(long num) throws InvalidParameterException{
|
||||
long fact = 1L; //The value of the factorial
|
||||
@@ -680,15 +494,7 @@ public class NumberAlgorithms{
|
||||
|
||||
//This function returns the GCD of the two numbers sent to it
|
||||
public static int gcd(int num1, int num2){
|
||||
while((num1 != 0) && (num2 != 0)){
|
||||
if(num1 > num2){
|
||||
num1 %= num2;
|
||||
}
|
||||
else{
|
||||
num2 %= num1;
|
||||
}
|
||||
}
|
||||
return num1 | num2;
|
||||
return (int)gcd((long)num1, (long)num2);
|
||||
}
|
||||
public static long gcd(long num1, long num2){
|
||||
while((num1 != 0) && (num2 != 0)){
|
||||
@@ -714,10 +520,6 @@ public class NumberAlgorithms{
|
||||
}
|
||||
|
||||
//Converts a number to its binary equivalent
|
||||
public static String toBin(int num){
|
||||
//Convert the number to a binary string
|
||||
return Integer.toBinaryString(num);
|
||||
}
|
||||
public static String toBin(long num){
|
||||
//Convert the number to binary string
|
||||
return Long.toBinaryString(num);
|
||||
|
||||
@@ -38,13 +38,13 @@ public class TestNumberAlgorithms{
|
||||
public void testGetPrimes(){
|
||||
//Test 1
|
||||
List<Integer> correctAnswer = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97);
|
||||
Integer topNum = 100;
|
||||
int topNum = 100;
|
||||
List<Integer> answer = NumberAlgorithms.getPrimes(topNum);
|
||||
assertEquals("getPrimes Integer failed", correctAnswer, answer);
|
||||
|
||||
//Test 2
|
||||
List<Long> longCorrectAnswer = Arrays.asList(2L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 29L, 31L, 37L, 41L, 43L, 47L, 53L, 59L, 61L, 67L, 71L, 73L, 79L, 83L, 89L, 97L);
|
||||
Long longTopNum = 100L;
|
||||
long longTopNum = 100L;
|
||||
List<Long> longAnswer = NumberAlgorithms.getPrimes(longTopNum);
|
||||
assertEquals("getPrimes Long failed", longCorrectAnswer, longAnswer);
|
||||
|
||||
@@ -59,13 +59,13 @@ public class TestNumberAlgorithms{
|
||||
public void testGetNumPrimes(){
|
||||
//Test 1
|
||||
List<Integer> correctAnswer = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97);
|
||||
Integer numPrimes = 25;
|
||||
int numPrimes = 25;
|
||||
List<Integer> answer = NumberAlgorithms.getNumPrimes(numPrimes);
|
||||
assertEquals("getNumPrimes Integer failed", correctAnswer, answer);
|
||||
|
||||
//Test 2
|
||||
List<Long> longCorrectAnswer = Arrays.asList(2L, 3L, 5L, 7L, 11L, 13L, 17L, 19L, 23L, 29L, 31L, 37L, 41L, 43L, 47L, 53L, 59L, 61L, 67L, 71L, 73L, 79L, 83L, 89L, 97L);
|
||||
Long longNumPrimes = 25L;
|
||||
long longNumPrimes = 25L;
|
||||
List<Long> longAnswer = NumberAlgorithms.getNumPrimes(longNumPrimes);
|
||||
assertEquals("getNumPrimes Long failed", longCorrectAnswer, longAnswer);
|
||||
|
||||
@@ -146,7 +146,7 @@ public class TestNumberAlgorithms{
|
||||
public void testGetFactors() throws InvalidResult{
|
||||
//Test 1
|
||||
List<Integer> correctAnswer = Arrays.asList(2, 2, 5, 5);
|
||||
Integer number = 100;
|
||||
int number = 100;
|
||||
List<Integer> answer = NumberAlgorithms.getFactors(number);
|
||||
assertEquals("getFactors Integer 1 failed", correctAnswer, answer);
|
||||
//Test 2
|
||||
@@ -157,7 +157,7 @@ public class TestNumberAlgorithms{
|
||||
|
||||
//Test 3
|
||||
List<Long> longCorrectAnswer = Arrays.asList(2L, 2L, 5L, 5L);
|
||||
Long longNumber = 100L;
|
||||
long longNumber = 100L;
|
||||
List<Long> longAnswer = NumberAlgorithms.getFactors(longNumber);
|
||||
assertEquals("getFactors Long failed", longCorrectAnswer, longAnswer);
|
||||
|
||||
@@ -172,7 +172,7 @@ public class TestNumberAlgorithms{
|
||||
public void testGetDivisors(){
|
||||
//Test 1
|
||||
List<Integer> correctAnswer = Arrays.asList(1, 2, 4, 5, 10, 20, 25, 50, 100);
|
||||
Integer topNum = 100;
|
||||
int topNum = 100;
|
||||
List<Integer> answer = NumberAlgorithms.getDivisors(topNum);
|
||||
assertEquals("getDivisors Integer 1 failed", correctAnswer, answer);
|
||||
//Test 2
|
||||
@@ -207,9 +207,9 @@ public class TestNumberAlgorithms{
|
||||
@Test
|
||||
public void testGetFib(){
|
||||
//Test 1
|
||||
Integer correctAnswer = 144;
|
||||
Integer number = 12;
|
||||
Integer answer = NumberAlgorithms.getFib(number);
|
||||
int correctAnswer = 144;
|
||||
int number = 12;
|
||||
int answer = NumberAlgorithms.getFib(number);
|
||||
assertEquals("getFib Integer 1 failed", correctAnswer, answer);
|
||||
//Test 2
|
||||
correctAnswer = 6765;
|
||||
@@ -218,9 +218,9 @@ public class TestNumberAlgorithms{
|
||||
assertEquals("getFib Integer 2 failed", correctAnswer, answer);
|
||||
|
||||
//Test 3
|
||||
Long longCorrectAnswer = 6765L;
|
||||
Long longNumber = 20L;
|
||||
Long longAnswer = NumberAlgorithms.getFib(longNumber);
|
||||
long longCorrectAnswer = 6765L;
|
||||
long longNumber = 20L;
|
||||
long longAnswer = NumberAlgorithms.getFib(longNumber);
|
||||
assertEquals("getFib Long failed", longCorrectAnswer, longAnswer);
|
||||
|
||||
//Test 4
|
||||
@@ -234,7 +234,7 @@ public class TestNumberAlgorithms{
|
||||
public void testGetAllFib(){
|
||||
//Test 1
|
||||
List<Integer> correctAnswer = Arrays.asList(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89);
|
||||
Integer highestNumber = 100;
|
||||
int highestNumber = 100;
|
||||
List<Integer> answer = NumberAlgorithms.getAllFib(highestNumber);
|
||||
assertEquals("getAllFib Integer 1 failed", correctAnswer, answer);
|
||||
//Test 2
|
||||
@@ -245,7 +245,7 @@ public class TestNumberAlgorithms{
|
||||
|
||||
//Test 3
|
||||
List<Long> longCorrectAnswer = Arrays.asList(1L, 1L, 2L, 3L, 5L, 8L, 13L, 21L, 34L, 55L, 89L, 144L, 233L, 377L, 610L, 987L);
|
||||
Long longHighestNumber = 1000L;
|
||||
long longHighestNumber = 1000L;
|
||||
List<Long> longAnswer = NumberAlgorithms.getAllFib(longHighestNumber);
|
||||
assertEquals("getAllFib Long failed", longCorrectAnswer, longAnswer);
|
||||
|
||||
@@ -260,9 +260,9 @@ public class TestNumberAlgorithms{
|
||||
public void testFactorial(){
|
||||
//Integer
|
||||
//Test 1
|
||||
Integer correctAnswer = 720;
|
||||
Integer number = 6;
|
||||
Integer answer = NumberAlgorithms.factorial(number);
|
||||
int correctAnswer = 720;
|
||||
int number = 6;
|
||||
int answer = NumberAlgorithms.factorial(number);
|
||||
assertEquals("factorial Integer 1 failed", correctAnswer, answer);
|
||||
//Test 2
|
||||
correctAnswer = 479001600;
|
||||
@@ -272,9 +272,9 @@ public class TestNumberAlgorithms{
|
||||
|
||||
//Long
|
||||
//Test 3
|
||||
Long correctAnswerLong = 720L;
|
||||
Long numberLong = 6L;
|
||||
Long answerLong = NumberAlgorithms.factorial(numberLong);
|
||||
long correctAnswerLong = 720L;
|
||||
long numberLong = 6L;
|
||||
long answerLong = NumberAlgorithms.factorial(numberLong);
|
||||
assertEquals("factorial Long 1 failed", correctAnswerLong, answerLong);
|
||||
//Test 4
|
||||
correctAnswerLong = 479001600L;
|
||||
@@ -309,6 +309,7 @@ public class TestNumberAlgorithms{
|
||||
answerBig = NumberAlgorithms.factorial(numberBig);
|
||||
assertEquals("factorial BigInteger 4 failed", correctAnswerBig, answerBig);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGCD(){
|
||||
//Test 1
|
||||
@@ -368,6 +369,7 @@ public class TestNumberAlgorithms{
|
||||
bigAnswer = NumberAlgorithms.gcd(bigNum1, bigNum2);
|
||||
assertEquals("GCD BigInteger 3 failed", bigCorrectAnswer, bigAnswer);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testToBin(){
|
||||
//Test 1
|
||||
|
||||
Reference in New Issue
Block a user