mirror of
https://bitbucket.org/Mattrixwv/luaclasses.git
synced 2025-12-06 18:33:59 -05:00
Added a file with some helpful algorithms
This commit is contained in:
92
Algorithms.lua
Normal file
92
Algorithms.lua
Normal file
@@ -0,0 +1,92 @@
|
||||
--luaClasses/Algorithms.lua
|
||||
--Matthew Ellison
|
||||
-- Created: 2-4-19
|
||||
--Modified: 2-4-19
|
||||
--This is a file of algorithms that I have found it useful to keep around at all times
|
||||
|
||||
|
||||
--This function returns a list with all the primes numbers <= goalNumber
|
||||
function getPrimes(goalNumber)
|
||||
local primes = {}; --Holds the prime numbers
|
||||
local foundFactor = false;
|
||||
|
||||
--If the number is 0 or negative return an empty table
|
||||
if(goalNumber <= 1) then
|
||||
return primes;
|
||||
--Otherwise the number is at lease 2, therefore 2 should be added to the list
|
||||
else
|
||||
primes[#primes + 1] = 2;
|
||||
end
|
||||
|
||||
--We can now start at 3 and skip all even numbers, because they cannot be prime
|
||||
for possiblePrime=3,goalNumber,2 do
|
||||
--Check all current primes, up to sqrt(possiblePrime), to see if there is a divisor
|
||||
primesCnt = 1;
|
||||
--We can safely assume that there will be at least 1 element in the primes list because of 2 being added before the loop
|
||||
topPossibleFactor = math.ceil(math.sqrt(possiblePrime))
|
||||
while(primes[primesCnt] <= topPossibleFactor) do
|
||||
if((possiblePrime % primes[primesCnt]) == 0) then
|
||||
foundFactor = true;
|
||||
break;
|
||||
else
|
||||
primesCnt = primesCnt + 1;
|
||||
end
|
||||
--Check if the index has gone out of range
|
||||
if(primesCnt >= #primes) then
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
--If you didn't find a factor then the current number must be prime
|
||||
if(not foundFactor) then
|
||||
primes[#primes + 1] = possiblePrime;
|
||||
else
|
||||
foundFactor = false;
|
||||
end
|
||||
end
|
||||
|
||||
--Sort the array just to be neat and safe
|
||||
table.sort(primes);
|
||||
|
||||
--Return the array
|
||||
return primes;
|
||||
end
|
||||
|
||||
--This function gets a specific number of primes
|
||||
function getNumPrimes(numberOfPrimes)
|
||||
|
||||
end
|
||||
|
||||
--This is a function that returns all the factors of goalNumber
|
||||
function getFactors(goalNumber)
|
||||
local primes = getPrimes(math.ceil(math.sqrt(goalNumber))); --Get all the primes up the largest possible divisor
|
||||
local factors = {}; --Holds all the factors
|
||||
|
||||
--You need to step through each prime and see if it is a factor of the number
|
||||
cnt = 1;
|
||||
while((cnt <= #primes) and (goalNumber > 1)) do
|
||||
--If the prime is a factor you need to add it to the factor list
|
||||
if((goalNumber % primes[cnt]) == 0) then
|
||||
factors[#factors + 1] = primes[cnt];
|
||||
goalNumber = goalNumber / primes[cnt];
|
||||
--Otherwise advance the location in the primes array you are looking at
|
||||
--By not advancing if the primes is a factor you allow for multiple of the same prime number as a factor
|
||||
else
|
||||
cnt = cnt + 1
|
||||
end
|
||||
end
|
||||
|
||||
--If you didn't get any factors the number itself must be a prime number
|
||||
if(#factors == 0) then
|
||||
factors[#factors + 1] = goalNumber;
|
||||
goalNumber = 1
|
||||
end
|
||||
|
||||
--If your some reason teh goalNumber is not 1 print an error message
|
||||
if(goalNumber > 1) then
|
||||
print("There was an error in getFactors(). A leftover of " .. goalNumber);
|
||||
end
|
||||
|
||||
--Return the list of factors
|
||||
return factors;
|
||||
end
|
||||
Reference in New Issue
Block a user