mirror of
https://bitbucket.org/Mattrixwv/octavefunctions.git
synced 2025-12-06 10:43:58 -05:00
Added check for the correct number of variables and added a few comments
This commit is contained in:
17
Bisection.m
17
Bisection.m
@@ -1,13 +1,20 @@
|
||||
function [xList,errorList] = Bisection (f, lowerValue, upperValue, allowError)
|
||||
function [xList,errorList] = Bisection(f, lowerValue, upperValue, allowError)
|
||||
%
|
||||
%Bisection(f, lowerValue, upperValue, allowError)
|
||||
%Uses the bisection method to find the possible answers to the root of the function f
|
||||
%
|
||||
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
%Setting necesary values for the function
|
||||
cnt = 1;
|
||||
%Check that the number of input variables is correct
|
||||
if(nargin ~= 4)
|
||||
error('That is not the correct number of arguments')
|
||||
end
|
||||
%A few necesary things before we begin
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
%Constant Variables
|
||||
maxItterations = 50;
|
||||
%Variables
|
||||
cnt = 1;
|
||||
errorValue = 1;
|
||||
currentValue = 0.0;
|
||||
|
||||
|
||||
@@ -4,15 +4,24 @@ function [xList, errorList] = FalsePosition(f, p0, p1, errorAllowed)
|
||||
%This function finds the root of a function using the method of False Position
|
||||
%
|
||||
|
||||
%Make sure the number of arguments is correct
|
||||
if(narginchk(4, 4))
|
||||
error('That is an incorrect number of arguments')
|
||||
end
|
||||
%A few necesary before we begin
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
%Constant variables
|
||||
maxIt = 50;
|
||||
%Variables
|
||||
cnt = 2;
|
||||
q0 = double(subs(f,p0));
|
||||
q1 = double(subs(f,p1));
|
||||
p = 0;
|
||||
q = 0;
|
||||
currentError = errorAllowed + 1;
|
||||
|
||||
%Loop until you find a value within the error or you reach the maximum number of itterations
|
||||
while((cnt <= maxIt) && (currentError >= errorAllowed))
|
||||
p = p1 - (q1 * (p1 - p0))/(q1 - q0);
|
||||
currentError = abs(p - p1);
|
||||
|
||||
13
Mullers.m
13
Mullers.m
@@ -4,17 +4,25 @@ function [xList, functionValueList] = Mullers(f, p0, p1, p2, errorAllowed)
|
||||
%This function finds the root of a function using Muller's Method
|
||||
%
|
||||
|
||||
%Make sure the number of arguments is correct
|
||||
if(narginchk(5,5))
|
||||
error('That is an incorrect number of arguments')
|
||||
end
|
||||
%A few necesary things before we get started
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
|
||||
%Constant variables
|
||||
maxIt = 50;
|
||||
%Variables
|
||||
h1 = p1 - p0;
|
||||
h2 = p2 - p1;
|
||||
s1 = (double(subs(f,p1)) - double(subs(f,p0))) / h1;
|
||||
s2 = (double(subs(f,p2)) - double(subs(f,p2))) / h2;
|
||||
d = (s2 - s1) / (h2 + h1);
|
||||
cnt = 2;
|
||||
maxIt = 50;
|
||||
|
||||
%Loop until you reach the maximum number of itterations
|
||||
%If you find an answer within error it will return
|
||||
while(cnt < maxIt)
|
||||
b = s2 + h2 * d;
|
||||
D = (b^2 - (4 * double(subs(f,p2)) * d))^(1/2);
|
||||
@@ -27,6 +35,7 @@ function [xList, functionValueList] = Mullers(f, p0, p1, p2, errorAllowed)
|
||||
p = p2 + h;
|
||||
xList(end+1) = p;
|
||||
functionValueList(end+1) = double(subs(f,p));
|
||||
%Exit the function if you get an answer within error
|
||||
if(abs(h) < errorAllowed)
|
||||
return;
|
||||
else
|
||||
|
||||
15
NewNewton.m
15
NewNewton.m
@@ -4,17 +4,24 @@ function [xList, errorList] = NewNewton (f, startingValue, errorAllowed)
|
||||
%This function computes the root of a function using the modified Newton's method
|
||||
%
|
||||
|
||||
%Make sure the number of arguments is correct
|
||||
if(narginchk(3,3))
|
||||
error('That is an incorrect number of arguments')
|
||||
end
|
||||
%A few necesary things before we get started
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
%Constant variables
|
||||
maxIt = 50;
|
||||
fp = diff(f);
|
||||
fpp = diff(fp);
|
||||
%Variables
|
||||
oldAnswer = startingValue;
|
||||
newAnswer = 0;
|
||||
currentError = errorAllowed + 1;
|
||||
cnt = 1;
|
||||
maxIt = 50;
|
||||
fp = diff(f);
|
||||
fpp = diff(fp);
|
||||
|
||||
|
||||
%Loop until you find an answer within error or you reach the maximum number of itterations
|
||||
while((currentError >= errorAllowed) && (cnt < maxIt))
|
||||
newAnswer = oldAnswer - ((double(subs(f,oldAnswer)) * double(subs(fp,oldAnswer)))/(double(subs(fp,oldAnswer))^2 - (double(subs(f,oldAnswer)) * double(subs(fpp,oldAnswer)))));
|
||||
currentError = abs(newAnswer - oldAnswer);
|
||||
|
||||
10
Newton.m
10
Newton.m
@@ -1,12 +1,20 @@
|
||||
function [xList,errorList] = Newton (f, startingValue, errorAllow)
|
||||
function [xList,errorList] = Newton(f, startingValue, errorAllow)
|
||||
%
|
||||
%Newton(f, startingValue, errorAllow)
|
||||
%This function uses Newtons method to find a solution to the root of f
|
||||
%
|
||||
|
||||
%Check that the number of arguments is correct
|
||||
if(nargin ~= 3)
|
||||
error('That is the wrong number of arguments')
|
||||
end
|
||||
%Things that are necessary to begin
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
%Constant variables
|
||||
maxIt = 50;
|
||||
fp = diff(f);
|
||||
%Variables
|
||||
oldAnswer = startingValue;
|
||||
newAnswer = 0;
|
||||
cnt = 1;
|
||||
|
||||
9
Secant.m
9
Secant.m
@@ -4,16 +4,23 @@ function [xList, errorList] = Secant(f, p0, p1, errorAllowed)
|
||||
%This function find the root of a function using the Secant Method
|
||||
%
|
||||
|
||||
%Make sure the number of arguments is correct
|
||||
if(narginchk(4,4))
|
||||
error('That is an incorrect number of arguments')
|
||||
end
|
||||
%A few necesary things before we get started
|
||||
pkg load symbolic;
|
||||
warning('off','OctSymPy:sym:rationalapprox');
|
||||
%Constant variables
|
||||
maxIt = 50;
|
||||
%Variables
|
||||
cnt = 2;
|
||||
q0 = double(subs(f,p0));
|
||||
q1 = double(subs(f,p1));
|
||||
currentError = errorAllowed + 1;
|
||||
p = 0;
|
||||
|
||||
|
||||
%Loop until you find an answer within error or you reach the maximum number of itterations
|
||||
while((cnt <= maxIt) && (currentError >= errorAllowed))
|
||||
p = p1 - (q1 * (p1 - p0))/(q1 - q0);
|
||||
currentError = abs(p - p1);
|
||||
|
||||
Reference in New Issue
Block a user