Added solution to problem 8

This commit is contained in:
2020-08-23 16:08:56 -04:00
parent c4d8624017
commit 549e6d7fd4
2 changed files with 125 additions and 1 deletions

View File

@@ -30,7 +30,7 @@ namespace ProjectEulerCS{
public class ProblemSelection{
//Holds the valid problem numbers
private static readonly List<int> _PROBLEM_NUMBERS = new List<int>()
{0, 1, 2, 3, 4, 5, 6, 7};
{0, 1, 2, 3, 4, 5, 6, 7, 8};
public static System.Collections.Generic.List<int> PROBLEM_NUMBERS{
get { return _PROBLEM_NUMBERS; }
}
@@ -46,6 +46,7 @@ namespace ProjectEulerCS{
case 5: problem = new Problem5(); break;
case 6: problem = new Problem6(); break;
case 7: problem = new Problem7(); break;
case 8: problem = new Problem8(); break;
}
return problem;
}

View File

@@ -0,0 +1,123 @@
//ProjectEuler/ProjectEulerCS/src/Problems/Problem8.cs
//Matthew Ellison
// Created: 08-23-20
//Modified: 08-23-20
//Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
/*
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
*/
//Unless otherwise listed all non-standard includes are my own creation and available from https://bibucket.org/Mattrixwv/CSClasses
/*
Copyright (C) 2020 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
namespace ProjectEulerCS.Problems{
public class Problem8 : Problem{
//Variables
//Static variables
//The 1000 digit number to check
private const string NUMBER = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
//Instance variables
private string maxNums; //Holds the string of the largest product
public string largestNums{
get{
if(!solved){
throw new Unsolved();
}
return maxNums;
}
}
private long maxProduct; //Holds the largest product of 13 numbers
public long largestProduct{
get{
if(!solved){
throw new Unsolved();
}
return maxProduct;
}
}
//Functions
//Constructor
public Problem8() : base("Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?"){
maxNums = "";
maxProduct = 0;
}
//Operational functions
//Solve the problem
public override void solve(){
//If the problem has already been solved do nothing and end the function
if(solved){
return;
}
//Start the timer
_timer.start();
//Cycle through the string of numbers looking for the maximum product
for(int cnt = 12;cnt < NUMBER.Length;++cnt){
long currentProduct = System.Int64.Parse(NUMBER[cnt - 12].ToString()) * System.Int64.Parse(NUMBER[cnt - 11].ToString()) * System.Int64.Parse(NUMBER[cnt - 10].ToString()) * System.Int64.Parse(NUMBER[cnt - 9].ToString()) * System.Int64.Parse(NUMBER[cnt - 8].ToString()) * System.Int64.Parse(NUMBER[cnt - 7].ToString()) * System.Int64.Parse(NUMBER[cnt - 6].ToString()) * System.Int64.Parse(NUMBER[cnt - 5].ToString()) * System.Int64.Parse(NUMBER[cnt - 4].ToString()) * System.Int64.Parse(NUMBER[cnt - 3].ToString()) * System.Int64.Parse(NUMBER[cnt - 2].ToString()) * System.Int64.Parse(NUMBER[cnt - 1].ToString()) * System.Int64.Parse(NUMBER[cnt].ToString());
//Check if the product is greater than the current maximum
if(currentProduct > maxProduct){
maxNums = NUMBER.Substring(cnt - 12, 13);
maxProduct = currentProduct;
}
}
//Stop the timer
_timer.stop();
//Throw a flag to show the problem is solved
solved = true;
//Save the results
_result = "The greatest product is " + maxProduct + "\nThe numbers are " + maxNums;
}
//Reset the problem so it can be run again
public override void reset(){
base.reset();
maxNums = "";
maxProduct = 0;
}
}
}
/* Results:
The greatest product is 23514624000
The numbers are 5576689664895
It took an average of 299.149 microseconds to run this problem through 100 iterations
*/