mirror of
https://bitbucket.org/Mattrixwv/projecteulerjava.git
synced 2025-12-06 17:13:58 -05:00
Added solution to problem 37
This commit is contained in:
@@ -36,7 +36,7 @@ public class ProblemSelection{
|
||||
public static final ArrayList<Integer> PROBLEM_NUMBERS = new ArrayList<Integer>(Arrays.asList( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
|
||||
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
|
||||
31, 32, 33, 34, 35, 36, 67));
|
||||
31, 32, 33, 34, 35, 36, 37, 67));
|
||||
|
||||
//Returns the problem corresponding to the given problem number
|
||||
public static Problem getProblem(Integer problemNumber){
|
||||
@@ -78,6 +78,7 @@ public class ProblemSelection{
|
||||
case 34 : problem = new Problem34(); break;
|
||||
case 35 : problem = new Problem35(); break;
|
||||
case 36 : problem = new Problem36(); break;
|
||||
case 37 : problem = new Problem37(); break;
|
||||
case 67 : problem = new Problem67(); break;
|
||||
}
|
||||
return problem;
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
//ProjectEulerJava/str/main/java/mattrixwv/ProjectEuler/Problems/Problem36.java
|
||||
//ProjectEulerJava/src/main/java/mattrixwv/ProjectEuler/Problems/Problem36.java
|
||||
//Matthew Ellison
|
||||
// Created: 06-29-21
|
||||
//Modified: 06-29-21
|
||||
|
||||
160
src/main/java/mattrixwv/ProjectEuler/Problems/Problem37.java
Normal file
160
src/main/java/mattrixwv/ProjectEuler/Problems/Problem37.java
Normal file
@@ -0,0 +1,160 @@
|
||||
//ProjectEulerJava/src/main/java/mattrixwv/ProjectEuler/Problems/Problem37.java
|
||||
//Matthew Ellison
|
||||
// Created: 07-01-21
|
||||
//Modified: 07-01-21
|
||||
//Find the sum of the only eleven primes that are both truncatable from left to right and right to left (2, 3, 5, and 7 are not counted).
|
||||
//Unless otherwise listed all non-standard includes are my own creation and available from https://bibucket.org/Mattrixwv/JavaClasses
|
||||
/*
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
package mattrixwv.ProjectEuler.Problems;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
import mattrixwv.Algorithms;
|
||||
import mattrixwv.SieveOfEratosthenes;
|
||||
import mattrixwv.ProjectEuler.Unsolved;
|
||||
|
||||
public class Problem37 extends Problem{
|
||||
//Variables
|
||||
//Static variables
|
||||
private static final long LAST_PRIME_BEFORE_CHECK = 7; //The last prime before 11 since single digit primes aren't checked
|
||||
//Instance variables
|
||||
private ArrayList<Long> truncPrimes; //All numbers that are truncatable primes
|
||||
private long sum; //The sum of all elements in truncPrimes
|
||||
|
||||
//Functions
|
||||
//Constructor
|
||||
public Problem37(){
|
||||
super("Find the sum of the only eleven primes that are both truncatable from left to right and right to left (2, 3, 5, and 7 are not counted).");
|
||||
truncPrimes = new ArrayList<Long>();
|
||||
sum = 0;
|
||||
}
|
||||
//Operational functions
|
||||
//Solve the problem
|
||||
public void solve(){
|
||||
//If the problem has already been solved do nothing and end the function
|
||||
if(solved){
|
||||
return;
|
||||
}
|
||||
|
||||
//Start the timer
|
||||
timer.start();
|
||||
|
||||
//Create the sieve and get the first prime number
|
||||
SieveOfEratosthenes sieve = new SieveOfEratosthenes();
|
||||
long currentPrime = sieve.next();
|
||||
//Loop through the sieve until you get to LAST_PRIME_BEFORE_CHECK
|
||||
while(currentPrime < LAST_PRIME_BEFORE_CHECK){
|
||||
currentPrime = sieve.next();
|
||||
}
|
||||
//Loop until truncPrimes contains 11 elements
|
||||
while(truncPrimes.size() < 11){
|
||||
boolean isTruncPrime = true;
|
||||
//Get the next prime
|
||||
currentPrime = sieve.next();
|
||||
//Convert the prime to a string
|
||||
String primeString = Long.toString(currentPrime);
|
||||
//If the string contains an even digit move to the next prime
|
||||
for(int strLoc = 0;(strLoc < primeString.length()) && (isTruncPrime);++strLoc){
|
||||
//Allow 2 to be the first digit
|
||||
if((strLoc == 0) && (primeString.charAt(strLoc) == '2')){
|
||||
continue;
|
||||
}
|
||||
switch(primeString.charAt(strLoc)){
|
||||
case '0' :
|
||||
case '2' :
|
||||
case '4' :
|
||||
case '6' :
|
||||
case '8' : isTruncPrime = false; break;
|
||||
}
|
||||
}
|
||||
//Start removing digits from the left and see if the number stays prime
|
||||
if(isTruncPrime){
|
||||
for(int truncLoc = 1;truncLoc < primeString.length();++truncLoc){
|
||||
//Create a substring of the prime, removing the needed digits from the left
|
||||
String primeSubstring = primeString.substring(truncLoc);
|
||||
//Convert the string to an int and see if the number is still prime
|
||||
long newPrime = Long.valueOf(primeSubstring);
|
||||
if(!Algorithms.isPrime(newPrime)){
|
||||
isTruncPrime = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
//Start removing digits from the right and see if the number stays prime
|
||||
if(isTruncPrime){
|
||||
for(int truncLoc = 1;truncLoc < primeString.length();++truncLoc){
|
||||
//Create a substring of the prime, removing the needed digits from the right
|
||||
String primeSubstring = primeString.substring(0, primeString.length() - truncLoc);
|
||||
//Convert the string to an int and see if the number is still prime
|
||||
long newPrime = Long.valueOf(primeSubstring);
|
||||
if(!Algorithms.isPrime(newPrime)){
|
||||
isTruncPrime = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
//If the number remained prime through all operations add it to the vector
|
||||
if(isTruncPrime){
|
||||
truncPrimes.add(currentPrime);
|
||||
}
|
||||
}
|
||||
//Get the sum of all elements in the truncPrimes vector
|
||||
sum = Algorithms.getLongSum(truncPrimes);
|
||||
|
||||
//Stop the timer
|
||||
timer.stop();
|
||||
|
||||
//Throw a flag to show the porblem is solved
|
||||
solved = true;
|
||||
}
|
||||
//Reset the problem so it can be run again
|
||||
public void reset(){
|
||||
super.reset();
|
||||
truncPrimes.clear();
|
||||
sum = 0;
|
||||
}
|
||||
|
||||
//Gets
|
||||
//Returns a string with the solution to the problem
|
||||
public String getResult(){
|
||||
//If the problem hasn't been solved throw an exception
|
||||
if(!solved){
|
||||
throw new Unsolved();
|
||||
}
|
||||
return String.format("The sum of all left and right truncatable primes is %d", sum);
|
||||
}
|
||||
//Returns the list of primes that can be truncated
|
||||
public ArrayList<Long> getTruncatablePrimes(){
|
||||
if(!solved){
|
||||
throw new Unsolved();
|
||||
}
|
||||
return truncPrimes;
|
||||
}
|
||||
//Return the sum of all primes in truncPrimes
|
||||
public long getSumOfPrimes(){
|
||||
if(!solved){
|
||||
throw new Unsolved();
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
}
|
||||
|
||||
/* Results:
|
||||
The sum of all left and right truncatable primes is 748317
|
||||
It took an average of 103.829 milliseconds to run this problem through 100 iterations
|
||||
*/
|
||||
Reference in New Issue
Block a user