Initial commit with existing files

This commit is contained in:
2020-06-06 17:15:36 -04:00
commit 321e91c098
33 changed files with 3616 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
#Visual Studio Code
.vscode

165
LICENSE Normal file
View File

@@ -0,0 +1,165 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

51
Problem1.lua Normal file
View File

@@ -0,0 +1,51 @@
--ProjectEuler/lua/Problem1.lua
--Matthew Ellison
-- Created: 02-01-19
--Modified: 03-28-19
--What is the sum of all the multiples of 3 or 5 that are less than 1000
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
TOP_NUMBER = 999; --This is the largest number that you are going to check
sumOfMultiples = 0;
for num = 1, TOP_NUMBER do
if((num % 3) == 0) then
sumOfMultiples = sumOfMultiples + num;
elseif((num % 5) == 0) then
sumOfMultiples = sumOfMultiples + num;
end
end
timer:stop()
--Print the results
print("The sum of all numbers < 1000 is " .. sumOfMultiples);
print("It took " .. timer:getMicroseconds() .. " microseconds to run this algorithm");
--[[Results:
The sum of all numbers < 1000 is 233168
It took 148 microseconds to run this algorithm
]]

52
Problem10.lua Normal file
View File

@@ -0,0 +1,52 @@
--ProjectEuler/lua/Problem10.lua
--Matthew Ellison
-- Created: 02-06-19
--Modified: 03-28-19
--Find the sum of all the primes below two million
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
timer = Stopwatch:create();
timer:start();
LARGEST_PRIME = 2000000; --Sum all prime numbers smaller than this
--Get all of the prime numbers < LARGEST_PRIME
local primes = getPrimes(LARGEST_PRIME);
--Get the sum of the table
local sumOfPrimes = 0;
for location=1,#primes do
sumOfPrimes = sumOfPrimes + primes[location];
end
timer:stop();
--Print the results
print("The sum of all prime numbers less than " .. LARGEST_PRIME .. " is " .. sumOfPrimes);
print("It took " .. timer:getSeconds() .. " seconds to run this algorithm");
--[[Results:
The sum of all prime numbers less than 2000000 is 142913828922
It took 5.940409 seconds to run this algorithm
]]

183
Problem11.lua Normal file
View File

@@ -0,0 +1,183 @@
--ProjectEuler/lua/Problem11.lua
--Matthew Ellison
-- Created: 02-06-19
--Modified: 03-28-19
--What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
--[[
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
]]
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
--Setup the grid of numbers
local GRID = {};
GRID[1] = {8, 2, 22, 97, 38, 15, 00, 40, 00, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8};
GRID[2] = {49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 00};
GRID[3] = {81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65};
GRID[4] = {52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91};
GRID[5] = {22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80};
GRID[6] = {24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50};
GRID[7] = {32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70};
GRID[8] = {67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21};
GRID[9] = {24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72};
GRID[10] = {21, 36, 23, 9, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95};
GRID[11] = {78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92};
GRID[12] = {16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57};
GRID[13] = {86, 56, 00, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58};
GRID[14] = {19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40};
GRID[15] = {4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66};
GRID[16] = {88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69};
GRID[17] = {4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36};
GRID[18] = {20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16};
GRID[19] = {20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54};
GRID[20] = {1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48};
--This function returns the product of all elements in a table
function getTableProduct(numbers)
local product = 1; --Start with 1 because you are working with multiplication
--Loop through ever element in a table and multiply them all together
for location=1,#numbers do
product = product * numbers[location];
end
--Return the product of all elements
return product;
end
local greatestNumbers = {0, 0, 0, 0}; --Holds the numbers that give the greatest product
local currentNumbers = {0, 0, 0, 0}; --Holds the numbers that you are currently working with
--Loop through ever location in the grid
for row=1,#GRID do
for col=1,#GRID[row] do
--Setup variables for know what direction you can move
local moveLeft = false;
local moveRight = false;
local moveDown = false;
--Check which directions you will be able to move
if((col - 3) >= 1) then
moveLeft = true;
end
if((col + 3) <= #GRID[row]) then
moveRight = true;
end
if((row + 3) <= #GRID) then
moveDown = true;
end
--With these movements check for the greatest product of 4 adjacent numbers
--Move Right
if(moveRight) then
currentNumbers[1] = GRID[row][col];
currentNumbers[2] = GRID[row][col + 1];
currentNumbers[3] = GRID[row][col + 2];
currentNumbers[4] = GRID[row][col + 3];
--Check if the current set is greater than the maximum
if(getTableProduct(currentNumbers) > getTableProduct(greatestNumbers)) then
greatestNumbers[1] = currentNumbers[1];
greatestNumbers[2] = currentNumbers[2];
greatestNumbers[3] = currentNumbers[3];
greatestNumbers[4] = currentNumbers[4];
end
end
--Move Down
if(moveDown) then
currentNumbers[1] = GRID[row][col];
currentNumbers[2] = GRID[row + 1][col];
currentNumbers[3] = GRID[row + 2][col];
currentNumbers[4] = GRID[row + 3][col];
--Check if the current set is greater than the maximum
if(getTableProduct(currentNumbers) > getTableProduct(greatestNumbers)) then
greatestNumbers[1] = currentNumbers[1];
greatestNumbers[2] = currentNumbers[2];
greatestNumbers[3] = currentNumbers[3];
greatestNumbers[4] = currentNumbers[4];
end
end
--Move Down & Left
if(moveDown and moveLeft) then
currentNumbers[1] = GRID[row][col];
currentNumbers[2] = GRID[row + 1][col - 1];
currentNumbers[3] = GRID[row + 2][col - 2];
currentNumbers[4] = GRID[row + 3][col - 3];
--Check if the current set is greater than the maximum
if(getTableProduct(currentNumbers) > getTableProduct(greatestNumbers)) then
greatestNumbers[1] = currentNumbers[1];
greatestNumbers[2] = currentNumbers[2];
greatestNumbers[3] = currentNumbers[3];
greatestNumbers[4] = currentNumbers[4];
end
end
--Move Down & Right
if(moveDown and moveRight) then
currentNumbers[1] = GRID[row][col];
currentNumbers[2] = GRID[row + 1][col + 1];
currentNumbers[3] = GRID[row + 2][col + 2];
currentNumbers[4] = GRID[row + 3][col + 3];
--Check if the current set is greater than the maximum
if(getTableProduct(currentNumbers) > getTableProduct(greatestNumbers)) then
greatestNumbers[1] = currentNumbers[1];
greatestNumbers[2] = currentNumbers[2];
greatestNumbers[3] = currentNumbers[3];
greatestNumbers[4] = currentNumbers[4];
end
end
end
end
timer:stop();
--Print the results
print("The greatest product of 4 numbers in a line is " .. getTableProduct(greatestNumbers));
print("The numbers are " .. greatestNumbers[1] .. ' ' .. greatestNumbers[2] .. ' ' .. greatestNumbers[3] .. ' ' .. greatestNumbers[4]);
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results:
The greatest product of 4 numbers in a line is 70600674
The numbers are 89 94 97 87
It took 0.701 milliseconds to run this algorithm
]]

65
Problem12.lua Normal file
View File

@@ -0,0 +1,65 @@
--ProjectEUler/lua/Problem12.lua
--Matthew Ellison
-- Created: 02-07-19
--Modified: 03-28-19
--What is the value of the first triangle number to have over five hundred divisors?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
timer = Stopwatch:create();
timer:start();
GOAL_DIVISORS = 500;
local triangularNumber = 1;
local nextNumber = 2;
local foundNumber = false;
local divisors = {};
while((not foundNumber) and (triangularNumber > 0)) do
--See how many divisors this triangular number has
divisors = getDivisors(triangularNumber);
--If it has more than GOAL_DIVISORS raise a flag to stop the loop
if(#divisors > GOAL_DIVISORS) then
foundNumber = true;
else
triangularNumber = triangularNumber + nextNumber; --Add the next number to continue the triangular sequence
nextNumber = nextNumber + 1; --Advance to the next number for the triangular sequence
end
end
timer:stop();
--Print the results
if(foundNumber) then
print("The first triangular number with more than " .. GOAL_DIVISORS .. " divisors is " .. triangularNumber);
else
print("There was an error. Could not find a triangular number with " .. GOAL_DIVISORS .. " divisors before overflow");
end
print("It took " .. timer:getSeconds() .. " seconds to run this algorithm");
--[[Results
The first triangular number with more than 500divisors is 76576500
It took 1.498547 seconds to run this algorithm
]]

251
Problem13.lua Normal file
View File

@@ -0,0 +1,251 @@
--ProjectEuler/lua/Problem13.lua
--Matthew Ellison
-- Created: 02-07-19
--Modified: 03-28-19
--Work out the first ten digits of the sum of the following one-hundred 50-digit numbers
--[[
37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690
]]
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--I used the bigint library from https://github.com/empyreuma/bigint.lua
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
local bigint = require "bigint"
timer = Stopwatch:create();
timer:start();
NUMBERS = {};
NUMBERS[#NUMBERS+1] = bigint.new("37107287533902102798797998220837590246510135740250")
NUMBERS[#NUMBERS+1] = bigint.new("46376937677490009712648124896970078050417018260538")
NUMBERS[#NUMBERS+1] = bigint.new("74324986199524741059474233309513058123726617309629")
NUMBERS[#NUMBERS+1] = bigint.new("91942213363574161572522430563301811072406154908250")
NUMBERS[#NUMBERS+1] = bigint.new("23067588207539346171171980310421047513778063246676")
NUMBERS[#NUMBERS+1] = bigint.new("89261670696623633820136378418383684178734361726757")
NUMBERS[#NUMBERS+1] = bigint.new("28112879812849979408065481931592621691275889832738")
NUMBERS[#NUMBERS+1] = bigint.new("44274228917432520321923589422876796487670272189318")
NUMBERS[#NUMBERS+1] = bigint.new("47451445736001306439091167216856844588711603153276")
NUMBERS[#NUMBERS+1] = bigint.new("70386486105843025439939619828917593665686757934951")
NUMBERS[#NUMBERS+1] = bigint.new("62176457141856560629502157223196586755079324193331")
NUMBERS[#NUMBERS+1] = bigint.new("64906352462741904929101432445813822663347944758178")
NUMBERS[#NUMBERS+1] = bigint.new("92575867718337217661963751590579239728245598838407")
NUMBERS[#NUMBERS+1] = bigint.new("58203565325359399008402633568948830189458628227828")
NUMBERS[#NUMBERS+1] = bigint.new("80181199384826282014278194139940567587151170094390")
NUMBERS[#NUMBERS+1] = bigint.new("35398664372827112653829987240784473053190104293586")
NUMBERS[#NUMBERS+1] = bigint.new("86515506006295864861532075273371959191420517255829")
NUMBERS[#NUMBERS+1] = bigint.new("71693888707715466499115593487603532921714970056938")
NUMBERS[#NUMBERS+1] = bigint.new("54370070576826684624621495650076471787294438377604")
NUMBERS[#NUMBERS+1] = bigint.new("53282654108756828443191190634694037855217779295145")
NUMBERS[#NUMBERS+1] = bigint.new("36123272525000296071075082563815656710885258350721")
NUMBERS[#NUMBERS+1] = bigint.new("45876576172410976447339110607218265236877223636045")
NUMBERS[#NUMBERS+1] = bigint.new("17423706905851860660448207621209813287860733969412")
NUMBERS[#NUMBERS+1] = bigint.new("81142660418086830619328460811191061556940512689692")
NUMBERS[#NUMBERS+1] = bigint.new("51934325451728388641918047049293215058642563049483")
NUMBERS[#NUMBERS+1] = bigint.new("62467221648435076201727918039944693004732956340691")
NUMBERS[#NUMBERS+1] = bigint.new("15732444386908125794514089057706229429197107928209")
NUMBERS[#NUMBERS+1] = bigint.new("55037687525678773091862540744969844508330393682126")
NUMBERS[#NUMBERS+1] = bigint.new("18336384825330154686196124348767681297534375946515")
NUMBERS[#NUMBERS+1] = bigint.new("80386287592878490201521685554828717201219257766954")
NUMBERS[#NUMBERS+1] = bigint.new("78182833757993103614740356856449095527097864797581")
NUMBERS[#NUMBERS+1] = bigint.new("16726320100436897842553539920931837441497806860984")
NUMBERS[#NUMBERS+1] = bigint.new("48403098129077791799088218795327364475675590848030")
NUMBERS[#NUMBERS+1] = bigint.new("87086987551392711854517078544161852424320693150332")
NUMBERS[#NUMBERS+1] = bigint.new("59959406895756536782107074926966537676326235447210")
NUMBERS[#NUMBERS+1] = bigint.new("69793950679652694742597709739166693763042633987085")
NUMBERS[#NUMBERS+1] = bigint.new("41052684708299085211399427365734116182760315001271")
NUMBERS[#NUMBERS+1] = bigint.new("65378607361501080857009149939512557028198746004375")
NUMBERS[#NUMBERS+1] = bigint.new("35829035317434717326932123578154982629742552737307")
NUMBERS[#NUMBERS+1] = bigint.new("94953759765105305946966067683156574377167401875275")
NUMBERS[#NUMBERS+1] = bigint.new("88902802571733229619176668713819931811048770190271")
NUMBERS[#NUMBERS+1] = bigint.new("25267680276078003013678680992525463401061632866526")
NUMBERS[#NUMBERS+1] = bigint.new("36270218540497705585629946580636237993140746255962")
NUMBERS[#NUMBERS+1] = bigint.new("24074486908231174977792365466257246923322810917141")
NUMBERS[#NUMBERS+1] = bigint.new("91430288197103288597806669760892938638285025333403")
NUMBERS[#NUMBERS+1] = bigint.new("34413065578016127815921815005561868836468420090470")
NUMBERS[#NUMBERS+1] = bigint.new("23053081172816430487623791969842487255036638784583")
NUMBERS[#NUMBERS+1] = bigint.new("11487696932154902810424020138335124462181441773470")
NUMBERS[#NUMBERS+1] = bigint.new("63783299490636259666498587618221225225512486764533")
NUMBERS[#NUMBERS+1] = bigint.new("67720186971698544312419572409913959008952310058822")
NUMBERS[#NUMBERS+1] = bigint.new("95548255300263520781532296796249481641953868218774")
NUMBERS[#NUMBERS+1] = bigint.new("76085327132285723110424803456124867697064507995236")
NUMBERS[#NUMBERS+1] = bigint.new("37774242535411291684276865538926205024910326572967")
NUMBERS[#NUMBERS+1] = bigint.new("23701913275725675285653248258265463092207058596522")
NUMBERS[#NUMBERS+1] = bigint.new("29798860272258331913126375147341994889534765745501")
NUMBERS[#NUMBERS+1] = bigint.new("18495701454879288984856827726077713721403798879715")
NUMBERS[#NUMBERS+1] = bigint.new("38298203783031473527721580348144513491373226651381")
NUMBERS[#NUMBERS+1] = bigint.new("34829543829199918180278916522431027392251122869539")
NUMBERS[#NUMBERS+1] = bigint.new("40957953066405232632538044100059654939159879593635")
NUMBERS[#NUMBERS+1] = bigint.new("29746152185502371307642255121183693803580388584903")
NUMBERS[#NUMBERS+1] = bigint.new("41698116222072977186158236678424689157993532961922")
NUMBERS[#NUMBERS+1] = bigint.new("62467957194401269043877107275048102390895523597457")
NUMBERS[#NUMBERS+1] = bigint.new("23189706772547915061505504953922979530901129967519")
NUMBERS[#NUMBERS+1] = bigint.new("86188088225875314529584099251203829009407770775672")
NUMBERS[#NUMBERS+1] = bigint.new("11306739708304724483816533873502340845647058077308")
NUMBERS[#NUMBERS+1] = bigint.new("82959174767140363198008187129011875491310547126581")
NUMBERS[#NUMBERS+1] = bigint.new("97623331044818386269515456334926366572897563400500")
NUMBERS[#NUMBERS+1] = bigint.new("42846280183517070527831839425882145521227251250327")
NUMBERS[#NUMBERS+1] = bigint.new("55121603546981200581762165212827652751691296897789")
NUMBERS[#NUMBERS+1] = bigint.new("32238195734329339946437501907836945765883352399886")
NUMBERS[#NUMBERS+1] = bigint.new("75506164965184775180738168837861091527357929701337")
NUMBERS[#NUMBERS+1] = bigint.new("62177842752192623401942399639168044983993173312731")
NUMBERS[#NUMBERS+1] = bigint.new("32924185707147349566916674687634660915035914677504")
NUMBERS[#NUMBERS+1] = bigint.new("99518671430235219628894890102423325116913619626622")
NUMBERS[#NUMBERS+1] = bigint.new("73267460800591547471830798392868535206946944540724")
NUMBERS[#NUMBERS+1] = bigint.new("76841822524674417161514036427982273348055556214818")
NUMBERS[#NUMBERS+1] = bigint.new("97142617910342598647204516893989422179826088076852")
NUMBERS[#NUMBERS+1] = bigint.new("87783646182799346313767754307809363333018982642090")
NUMBERS[#NUMBERS+1] = bigint.new("10848802521674670883215120185883543223812876952786")
NUMBERS[#NUMBERS+1] = bigint.new("71329612474782464538636993009049310363619763878039")
NUMBERS[#NUMBERS+1] = bigint.new("62184073572399794223406235393808339651327408011116")
NUMBERS[#NUMBERS+1] = bigint.new("66627891981488087797941876876144230030984490851411")
NUMBERS[#NUMBERS+1] = bigint.new("60661826293682836764744779239180335110989069790714")
NUMBERS[#NUMBERS+1] = bigint.new("85786944089552990653640447425576083659976645795096")
NUMBERS[#NUMBERS+1] = bigint.new("66024396409905389607120198219976047599490197230297")
NUMBERS[#NUMBERS+1] = bigint.new("64913982680032973156037120041377903785566085089252")
NUMBERS[#NUMBERS+1] = bigint.new("16730939319872750275468906903707539413042652315011")
NUMBERS[#NUMBERS+1] = bigint.new("94809377245048795150954100921645863754710598436791")
NUMBERS[#NUMBERS+1] = bigint.new("78639167021187492431995700641917969777599028300699")
NUMBERS[#NUMBERS+1] = bigint.new("15368713711936614952811305876380278410754449733078")
NUMBERS[#NUMBERS+1] = bigint.new("40789923115535562561142322423255033685442488917353")
NUMBERS[#NUMBERS+1] = bigint.new("44889911501440648020369068063960672322193204149535")
NUMBERS[#NUMBERS+1] = bigint.new("41503128880339536053299340368006977710650566631954")
NUMBERS[#NUMBERS+1] = bigint.new("81234880673210146739058568557934581403627822703280")
NUMBERS[#NUMBERS+1] = bigint.new("82616570773948327592232845941706525094512325230608")
NUMBERS[#NUMBERS+1] = bigint.new("22918802058777319719839450180888072429661980811197")
NUMBERS[#NUMBERS+1] = bigint.new("77158542502016545090413245809786882778948721859617")
NUMBERS[#NUMBERS+1] = bigint.new("72107838435069186155435662884062257473692284509516")
NUMBERS[#NUMBERS+1] = bigint.new("20849603980134001723930671666823555245252804609722")
NUMBERS[#NUMBERS+1] = bigint.new("53503534226472524250874054075591789781264330331690")
--Get the sum of all the numbers in the table
local sum = bigint.new(0);
for location=1,#NUMBERS do
sum = bigint.add(sum, NUMBERS[location]);
end
timer:stop();
--Print the results
print("The sum off all " .. #NUMBERS .. " numbers is " .. bigint.unserialize(sum, 's'));
print("The first 10 digits are " .. string.sub(bigint.unserialize(sum, 's'), 1, 10));
--[[Results:
]]

83
Problem14.lua Normal file
View File

@@ -0,0 +1,83 @@
--ProjectEuler/lua/Problem14.lua
--Matthew Ellison
-- Created: 02-07-19
--Modified: 03-28-19
--[[
The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Which starting number, under one million, produces the longest chain?
]]
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
TOP_NUM = 1000000 --The largest number that you will check against the chain
--This function returns a table of numbers created by the chain
function getChain(startNum)
--Put the starting number in the list
local chain = {};
chain[#chain+1] = startNum;
--Starting with the current number perform the correct opperations on the numbers until that number reaches 1
while(startNum > 1) do
--Determine if the number is odd or even and perform the correct operations and add the new number to the list
if((startNum % 2) == 0) then
startNum = startNum / 2;
else
startNum = (3 * startNum) + 1;
end
--Add the new number to the chain
chain[#chain+1] = startNum;
end
--Return the list
return chain;
end
--Setup your variables
local largestChain = {};
--Start at 1 and run up to TOP_NUM checking how long the chain is when started with each number
for startingNumber=1,TOP_NUM do
local currentChain = getChain(startingNumber);
--If the new chain is longer than the current longest chain replace it
if(#currentChain > #largestChain) then
for location=1,#currentChain do
largestChain[location] = currentChain[location];
end
end
end
timer:stop();
--Print the results
print("The longest chain with a starting number < " .. TOP_NUM .. " starts with " .. largestChain[1] .. " with a length of " .. #largestChain);
print("It took " .. timer:getSeconds() .. " seconds to run this algorithm")
--[[Results:
The longest chain with a starting number < 1000000 starts with 837799 with a length of 525
It took 13.704 seconds to run this algorithm
]]

74
Problem15.lua Normal file
View File

@@ -0,0 +1,74 @@
--ProjectEuler/lua/Problem15.lua
--Matthew Ellison
-- Created: 02-07-19
--Modified: 03-28-19
--How many routes from the top left corner to the bottom right corner are there through a 20×20 grid if you can only move right and down?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
GRID_WIDTH = 20;
GRID_HEIGHT = 20;
lowestXReached = 20;
function movement(currentX, currentY)
--Return 1 if you are at the finish location
if((currentX == GRID_WIDTH) and (currentY == GRID_HEIGHT)) then
return 1;
end
local numberMoves = 0;
--Otherwise move one right if you can and recurse
if(currentX < GRID_WIDTH) then
numberMoves = numberMoves + movement(currentX + 1, currentY);
end
--Then move one down and recurse
if(currentY < GRID_HEIGHT) then
numberMoves = numberMoves + movement(currentX, currentY + 1);
end
---Helps keep track of where it is for timing purposes
if(currentX < lowestXReached) then
lowestXReached = currentX;
print("X hit");
print("NumberMoves = " .. numberMoves);
print("position = " .. currentX .. "; " .. currentY);
end
return numberMoves; --Return the number of moves that have been found so far
end
--Start the recursion at the correct location and catch what is returned
numberMoves = movement(0, 0);
timer:stop();
--Print the results
print("The number of paths from 1 corner of a " .. GRID_WIDTH .. " x " .. GRID_HEIGHT .. " grid to the opposite corner is " .. numberMoves);
print("It took " .. timer:getMinutes() .. " seconds to run this algorithm");
--[[Results:
Did not run this program to completion. It ran for 12.5 hours and was over half way done, but I got tired of waiting.
It is coded the same way as the C++ version so should come up to the same answer.
There has got to be a better way to do this problem.
]]

57
Problem16.lua Normal file
View File

@@ -0,0 +1,57 @@
--ProjectEuler/lua/Problem16.lua
--Matthew Ellison
-- Created: 02-07-19
--Modified: 03-28-19
--What is the sum of the digits of the number 2^1000?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--I used the bigint library from https://github.com/empyreuma/bigint.lua
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
local bigint = require("bigint")
local timer = Stopwatch:create();
timer:start();
--Get the number
local num = bigint.exponentiate(bigint.new(2), bigint.new(1000));
--Change the number to the string
local stringOfNum = bigint.unserialize(num, 's');
--Step through the string one element at a time
local sumOfNum = 0;
for location=1,string.len(stringOfNum) do
--Treat the character like a num and add it to the sum
sumOfNum = sumOfNum + string.sub(stringOfNum, location, location);
end
timer:stop();
--Print the results
print("2^1000 = " .. stringOfNum);
print("The sum of the digits is: " .. math.floor(sumOfNum));
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results:
2^1000 = 10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376
The sum of the digits is: 1366
It took 352.0 milliseconds to run this algorithm
]]

186
Problem17.lua Normal file
View File

@@ -0,0 +1,186 @@
--ProjectEuler/lua/Problem17.lua
--Matthew Ellison
-- Created: 02-07-19
--Modified: 03-28-19
--If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
--This function takes a number and returns it as a string in english
--This function only works for numbers -1,000,000 < num < 1,000,000
function getStringFromNum(number)
local numberString = "";
--Starting with the largest digit create a string based on the number passed in
--Check for negative
if(number < 0) then
numberString = numberString .. "negative ";
--Check if the number is zero
elseif(number == 0) then
numberString = numberString .. "zero";
end
--Start with the thousands place
if((number / 1000) >= 1) then
numberString = numberString .. getStringFromNum(math.floor(number / 1000));
numberString = numberString .. " thousand";
number = number - (math.floor(number / 1000) * 1000);
end
--Check for hundreds place
if((number / 100) >= 1) then
numberString = numberString .. getStringFromNum(math.floor(number / 100));
numberString = numberString .. " hundred";
number = number - (math.floor(number / 100) * 100);
end
--Insert an and if there is need
if((numberString ~= "") and (number > 0)) then
numberString = numberString .. " and ";
end
--Check for tens place
if((number / 10) >= 2) then
--For the tens you need to do something special
local tensPlace = math.floor(number / 10);
if(tensPlace == 9) then
numberString = numberString .. "ninety";
elseif(tensPlace == 8) then
numberString = numberString .. "eighty";
elseif(tensPlace == 7) then
numberString = numberString .. "seventy";
elseif(tensPlace == 6) then
numberString = numberString .. "sixty";
elseif(tensPlace == 5) then
numberString = numberString .. "fifty";
elseif(tensPlace == 4) then
numberString = numberString .. "forty";
elseif(tensPlace == 3) then
numberString = numberString .. "thrity";
elseif(tensPlace == 2) then
numberString = numberString .. "twenty";
end
number = number - (tensPlace * 10);
--If there is something left in the number you will need a space to separate it
if(number > 0) then
numberString = numberString .. ' ';
end
--Check for teens
elseif((number / 10) >= 1) then
local onesPlace = (number % 10);
if(onesPlace == 9) then
numberString = numberString .. "nineteen";
elseif(onesPlace == 8) then
numberString = numberString .. "eighteen";
elseif(onesPlace == 7) then
numberString = numberString .. "seventeen";
elseif(onesPlace == 6) then
numberString = numberString .. "sixteen";
elseif(onesPlace == 5) then
numberString = numberString .. "fifteen";
elseif(onesPlace == 4) then
numberString = numberString .. "fourteen";
elseif(onesPlace == 3) then
numberString = numberString .. "thirteen";
elseif(onesPlace == 2) then
numberString = numberString .. "twelve";
elseif(onesPlace == 1) then
numberString = numberString .. "eleven";
elseif(onesPlace == 0) then
numberString = numberString .. "ten";
end
--If this if was hit number was used up
number = 0;
end
--Check for ones place
if(number >= 1) then
if(number == 9) then
numberString = numberString .. "nine";
elseif(number == 8) then
numberString = numberString .. "eight";
elseif(number == 7) then
numberString = numberString .. "seven";
elseif(number == 6) then
numberString = numberString .. "six";
elseif(number == 5) then
numberString = numberString .. "five";
elseif(number == 4) then
numberString = numberString .. "four";
elseif(number == 3) then
numberString = numberString .. "three";
elseif(number == 2) then
numberString = numberString .. "two";
elseif(number == 1) then
numberString = numberString .. "one";
end
--If this if was hit number was used up
number = 0;
end
--Return the string
return numberString;
end
--This function returns the number of letters in a string, ignoring punctuation, whitespace, and numbers
function getNumberChars(number)
local sumOfLetters = 0;
--Start at location 1 and count the number of letters, ignoring punctuation and whitespace
for location=1,string.len(number) do
local tempString = string.sub(number, location, location);
if(string.match(tempString, "%w")) then
sumOfLetters = sumOfLetters + 1;
end
end
--Return the number of letters
return sumOfLetters;
end
timer = Stopwatch:create();
timer:start();
START_NUM = 1;
STOP_NUM = 1000;
local sumOfLetters = 0;
--Start with 1 and increment
for num=START_NUM,STOP_NUM do
--Pass the number to a function that will create a string for the number
local currentNumString = getStringFromNum(num);
--Pass the string to a function that will count the number of letters in a string, ignoring whitespace, punctuation, and numbers and add the amount tot he running tally
sumOfLetters = sumOfLetters + getNumberChars(currentNumString);
end
timer:stop();
--Print the results
print("The sum of all the letters in all the numbers " .. START_NUM .. '-' .. STOP_NUM .. " is " .. sumOfLetters);
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results:
The sum of all the letters in all the numbers 1-1000 is 21124
It took 4.0 milliseconds to run this algorithm
]]

227
Problem18.lua Normal file
View File

@@ -0,0 +1,227 @@
--ProjectEuler/lua/Problem18.lua
--Matthew Ellison
-- Created: 03-12-19
--Modified: 03-28-19
--Find the maximum total from top to bottom
--[[
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
]]
--This is done using a breadth first search
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
--[[ This is what locations should look like
location = {
xLocation = 0,
yLocation = 0,
total = 0,
fromRight = false
};
]]
function invert(list)
for rowCnt=1,NUM_ROWS do
for colCnt=1,#list[rowCnt] do
list[rowCnt][colCnt] = 100 - list[rowCnt][colCnt];
end
end
end
function foundInList(list, loc)
for location=1,#list do
if((list[location].xLocation == loc.xLocation) and (list[location].yLocation == loc.yLocation)) then
return true;
end
end
return false;
end
function remove_if(list, loc)
location = 1;
while(location <= #list) do
if((list[location].xLocation == loc.xLocation) and (list[location].yLocation == loc.yLocation)) then
table.remove(list, location);
else
location = location + 1;
end
end
end
--Create a timer and time the algorithm
timer = Stopwatch:create();
timer:start();
NUM_ROWS = 15;
list = {};
list[1] = {75};
list[2] = {95, 64};
list[3] = {17, 47, 82};
list[4] = {18, 35, 87, 10};
list[5] = {20, 04, 82, 47, 65};
list[6] = {19, 01, 23, 75, 03, 34};
list[7] = {88, 02, 77, 73, 07, 63, 67};
list[8] = {99, 65, 04, 28, 06, 16, 70, 92};
list[9] = {41, 41, 26, 56, 83, 40, 80, 70, 33};
list[10] = {41, 48, 72, 33, 47, 32, 37, 16, 94, 29};
list[11] = {53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14};
list[12] = {70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57};
list[13] = {91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48};
list[14] = {63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31};
list[15] = {04, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 04, 23};
--Invert the list so all elements are 100 - element
invert(list);
foundPoints = {}; --This is a table of locations
foundPoints[1] = {xLocation = 1, yLocation = 1, total = list[1][1], fromRight = false};
possiblePoints = {}; --This is a table of locations
--Add the second row as possible points
possiblePoints[1] = {xLocation = 1, yLocation = 2, total = (list[1][1] + list[2][1]), fromRight = true};
possiblePoints[2] = {xLocation = 2, yLocation = 2, total = (list[1][1] + list[2][2]), fromRight = false};
foundBottom = false; --Used when you find a point at the bottom
--Loop until you find the bottom
while(not foundBottom) do
--Check which possible point gives us the lowest number. If more than one has the same number simply keep the first one
minLoc = possiblePoints[1];
for loc=1,#possiblePoints do
if(possiblePoints[loc].total < minLoc.total) then
minLoc = possiblePoints[loc];
end
end
--Remove it from the list of possible points
remove_if(possiblePoints, minLoc);
--[[ Aids in tracing the trail instead of using line after this
--Add that point to the list of found points
if(not foundInList(foundPoints, minLoc)) then
table.insert(foundPoints, minLoc);
end
]]
table.insert(foundPoints, minLoc);
--Add to the list of possible points from the point we just found and
--If you are at the bottom raise the flag to end the program
xLoc = minLoc.xLocation;
yLoc = minLoc.yLocation + 1; --Add one because you will always be moving to the next row
if(yLoc > NUM_ROWS) then
foundBottom = true;
else
--print("minLoc.total = " .. minLoc.total);
--print("list[" .. yLoc .. "][" .. xLoc .. "] = ");
table.insert(possiblePoints, {xLocation = xLoc, yLocation = yLoc, total = (minLoc.total + list[yLoc][xLoc]), fromRight = true});
xLoc = xLoc + 1; --Advance the x location to simulate going right
table.insert(possiblePoints, {xLocation = xLoc, yLocation = yLoc, total = (minLoc.total + list[yLoc][xLoc]), fromRight = false});
end
end
actualTotal = ((100 * (NUM_ROWS)) - foundPoints[#foundPoints].total);
--Stop the timer
timer:stop();
--Reinvert the list so it will print propperly
invert(list);
--Print the results
print("The value of the longest path is " .. actualTotal);
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[
--Print the pyramid of numbers out
for rowCnt=1,NUM_ROWS do
for colCnt=1,#list[rowCnt] do
if(list[rowCnt][colCnt] < 10) then
io.write(' ' .. list[rowCnt][colCnt] .. ' ');
else
io.write(list[rowCnt][colCnt] .. ' ');
end
end
print("");
end
print("\n\n")
--Find the trail followed
trail = {}; --Holds the locations that were traveled along
table.insert(trail, 1, foundPoints[#foundPoints]); --Start with the last point and continue adding to the front of the list
top = false;
while(not top) do
--Find the shortest way from the last location to the current one
found = false;
location = #foundPoints;
while(not found) do
--print("Location: " .. location);
--print("trail[1].xLocation = " .. trail[1].xLocation .. "\ntrail[1].yLocation = " .. trail[1].yLocation);
--print("foundPoints[location].xLocation = " .. foundPoints[location].xLocation .. "\nfoundPoints[location].yLocation = " .. foundPoints[location].yLocation);
if(trail[1].fromRight) then
if((foundPoints[location].xLocation == trail[1].xLocation) and (foundPoints[location].yLocation == (trail[1].yLocation - 1))) then
found = true;
else
location = location - 1;
end
else
if((foundPoints[location].xLocation == (trail[1].xLocation) - 1) and (foundPoints[location].yLocation == (trail[1].yLocation - 1))) then
found = true;
else
location = location - 1;
end
end
end
--Insert the location into the trail
table.insert(trail, 1, foundPoints[location]);
--If the current location is 1 then we are at the top
if(trail[1].yLocation == 1) then
top = true;
end
end
--Print the trail
for location=1,#trail do
io.write(list[trail[location].yLocation][trail[location].xLocation] .. "->");
end
print("");
]]
--[[ Results:
The value of the longest path is 1074
It took 1.162 milliseconds to run this algorithm
]]

186
Problem19.lua Normal file
View File

@@ -0,0 +1,186 @@
--ProjectEuler/lua/Problem19.lua
--Matthew Ellison
-- Created: 03-13-19
--Modified: 03-28-19
--How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?
--[[
You are given the following information, but you may prefer to do some research for yourself.
1 Jan 1900 was a Monday.
Thirty days has September,
April, June and November.
All the rest have thirty-one,
Saving February alone,
Which has twenty-eight, rain or shine.
And on leap years, twenty-nine.
A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.
]]
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
DAYS = {
SUNDAY = 0,
MONDAY = 1,
TUESDAY = 2,
WEDNESDAY = 3,
THURSDAY = 4,
FRIDAY = 5,
SATURDAY = 6,
NUMBER_OF_DAYS = 7,
ERROR = 8;
}
START_YEAR = 1901;
END_YEAR = 2000;
--Return the day of the week that the date you pass into it is on
function getDay(month, day, year)
--Make sure the numbers are within propper bounds
if((month < 1) or (month > 12) or (day < 1) or (day > 31) or (year < 1)) then
return DAYS.ERROR;
end
numDays = 0;
currentYear = 1;
currentMonth = 1;
currentDay = DAYS.SATURDAY;
day = day - 1;
--Add the correct number of days for every year
while(currentYear < year) do
if(isLeapYear(currentYear)) then
numDays = numDays + 366;
else
numDays = numDays + 365;
end
currentYear = currentYear + 1;
end
--Add the correct number of days for every month
while(currentMonth < month) do
--February
if(currentMonth == 2) then
if(isLeapYear(currentYear)) then
numDays = numDays + 29;
else
numDays = numDays + 28;
end
--31 day months
elseif((currentMonth == 1) or (currentMonth == 3) or (currentMonth == 5) or (currentMonth == 7) or (currentMonth == 8) or (currentMonth == 10) or (currentMonth == 12)) then
numDays = numDays + 31;
--30 day months
else
numDays = numDays + 30;
end
currentMonth = currentMonth + 1;
end
--Account for the weird year of 1752
if(year > 1752) then
numDays = numDays - 11;
elseif(year == 1752) then
if(month > 9) then
numDays = numDays - 11;
elseif(month == 9) then
if(day >= 14) then
numDays = numDays - 11;
--Days 3-13 were skipped that year
elseif((day > 2) and (day < 14)) then
return DAYS.ERROR;
end
end
end
--Add the correct number of days for every day
numDays = numDays + day;
currentDay = currentDay + numDays;
currentDay = currentDay % DAYS.NUMBER_OF_DAYS;
if(currentDay == DAYS.SUNDAY) then
day = DAYS.SUNDAY;
elseif(currentDay == DAYS.MONDAY) then
day = DAYS.MONDAY;
elseif(currentDay == DAYS.TUESDAY) then
day = DAYS.TUESDAY;
elseif(currentDay == DAYS.WEDNESDAY) then
day = DAYS.WEDNESDAY;
elseif(currentDay == DAYS.THURSDAY) then
day = DAYS.THURSDAY;
elseif(currentDay == DAYS.FRIDAY) then
day = DAYS.FRIDAY;
elseif(currentDay == DAYS.SATURDAY) then
day = DAYS.SATURDAY;
else
day = DAYS.ERROR;
end
--Return the day generated
return day;
end
function isLeapYear(year)
if(year < 1) then
answer = false;
elseif((year % 100) == 0) then
--This rule only applies at and after 1800
if(year <= 1700) then
answer = true;
elseif((year % 400) == 0) then
answer = true;
else
answer = false;
end
elseif((year % 4) == 0) then
answer = true;
else
answer = false;
end
return answer;
end
--Setup the variables
timer = Stopwatch:create();
totalSundays = 0;
--Start the timer
timer:start();
--Run for all years up to 2000
for year=START_YEAR,END_YEAR do
--Run for all months in the year
for month=1,12 do
day = getDay(month, 1, year);
if(day == DAYS.ERROR) then
io.output("There was an error with the day\n");
os.exit();
elseif(day == DAYS.SUNDAY) then
totalSundays = totalSundays + 1;
end
end
end
--Stop the timer
timer:stop()
--Print the results
io.write("There are " .. totalSundays .. " Sundays that landed on the first of the months from " .. START_YEAR .. " to " .. END_YEAR .. '\n');
io.write("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm\n");
--[[ Results:
There are 171 Sundays that landed on the first of the months from 1901 to 2000
It took 390.0 milliseconds to run this algorithm
]]

59
Problem2.lua Normal file
View File

@@ -0,0 +1,59 @@
--ProjectEuler/lua/Problem1.lua
--Matthew Ellison
-- Created: 02-01-19
--Modified: 03-28-19
--The sum of the even Fibonacci numbers less than 4,000,000
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
--Setup the variables
TOP_NUM = 4000000; --The highest looked for Fibonacci numbers
fibSum = 0; --Holds the sum of the Fibonacci numbers
fibNums = {1, 1, 2}; --An array to keep track of the Fibonacci numbers
--Loop to generate the Fibonacci numbers
cnt = 2; --A counter to hold the location in the array of the currently working Fibonacci number
fibNums[(cnt % 3) + 1] = fibNums[((cnt - 1) % 3) + 1] + fibNums[((cnt - 2) % 3) + 1];
while(fibNums[(cnt % 3) + 1] < TOP_NUM) do
--If the number is even add it to the sum, otherwise ignore it
if((fibNums[(cnt % 3) + 1] % 2) == 0) then
fibSum = fibSum + fibNums[(cnt % 3) + 1];
end
--Generate the next Fibonacci number in the sequence
cnt = cnt + 1
fibNums[(cnt % 3) + 1] = fibNums[((cnt - 1) % 3) + 1] + fibNums[((cnt - 2) % 3) + 1];
end
timer:stop();
--Print the results
print("The sum of all even Fibonacci numbers less than " .. TOP_NUM .. " is " .. fibSum);
print("It took " .. timer:getMicroseconds() .. " microseconds to run this algorithm");
--[[Results:
The sum of all even Fibonacci numbers less than 4000000 is 4613732
It took 56 microseconds to run this algorithm
]]

62
Problem20.lua Normal file
View File

@@ -0,0 +1,62 @@
--ProjectEuler/lua/Problem20.lua
--Matthew Ellison
-- Created: 03-14-19
--Modified: 03-28-19
--What is the sum of the digits of 100!
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--I used the bigint library from https://github.com/empyreuma/bigint.lua
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
local bigint = require("bigint")
TOP_NUM = 100;
--Start the timer
timer = Stopwatch:create();
timer:start();
local num = bigint.new(1); --The number to be generated
local sum = 0; --The sum of the digits in num
for cnt = 1, TOP_NUM do
num = bigint.multiply(num, bigint.new(cnt));
end
--Get a string of the number because it is easier to pull appart the individual characters to get the sum
numString = bigint.unserialize(num, 's');
--Run through every character in the string, convert it back to an integer and add it to the running sum
for cnt = 1, string.len(numString) do
sum = sum + tonumber(string.sub(numString, cnt, cnt));
end
--Stop the timer
timer:stop()
--Print the results
io.write("100! = " .. numString .. '\n');
io.write("The sum of the digits is: " .. sum .. '\n');
io.write("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm\n");
--[[ Results:
100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
The sum of the digits is: 648
It took 81.113 milliseconds to run this algorithm
]]

94
Problem21.lua Normal file
View File

@@ -0,0 +1,94 @@
--ProjectEuler/lua/Problem21.lua
--Matthew Ellison
-- Created: 03-19-19
--Modified: 03-28-19
--Evaluate the sum of all the amicable numbers under 10000
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
LIMIT = 10000; --The top number that will be evaluated
--Setup the timer
timer = Stopwatch:create();
--Setup the variables
divisorSum = {}; --Holds the sum of the factors of the subscript number
--Start the timer
timer:start();
--Generate the factors of all the numbers < 10000, get their sum, and add it to the list
for cnt = 1, LIMIT do
divisors = getDivisors(cnt); --Get all the divisors of a number
if(#divisors > 1) then
table.remove(divisors); --Remove the last entry because it will be the number itself
end
divisorSum[#divisorSum + 1] = getSum(divisors); --Add the sum of the divisors to the vector
end
--Check every sum of divisors in the list for a matching sum
amicable = {};
for cnt = 1, #divisorSum do
sum = divisorSum[cnt];
--If the sum is greater than the number of divisors then it is impossible to be amicable. Skip the number and continue
if(sum >= #divisorSum) then
--We know that divisorSum[cnt] == sum, do if divisorSum[sum] == cnt we have found an amicable number
elseif(divisorSum[sum] == cnt) then
--A number can't be amicable with itself, so skip those numbers
if(sum == cnt) then
--Add the number to the amicable vector
else
amicable[#amicable + 1] = cnt;
end
end
end
--Stop the timer
timer:stop();
--Sort the vector for neatness
table.sort(amicable);
--Print the results
io.write("All amicable numbers less than " .. LIMIT .. " are \n");
--Print the list of amicable numbers
for location = 1, #amicable do
io.write(amicable[location] .. '\n');
end
io.write("The sum of all of these amicable numbers is " .. getSum(amicable) .. '\n');
io.write("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm\n");
--[[ Results:
All amicable numbers less than 10000 are
220
284
1184
1210
2620
2924
5020
5564
6232
6368
The sum of all of these amicable numbers is 31626
It took 46.0 milliseconds to run this algorithm
]]

436
Problem22.lua Normal file
View File

@@ -0,0 +1,436 @@
--ProjectEuler/lua/Problem22.lua
--Matthew Ellison
-- Created: 03-20-19
--Modified: 03-28-19
--What is the total of all the name scores in the file?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require("Stopwatch")
require("Algorithms")
NAMES = {"MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN",
"BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY",
"CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE",
"CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS",
"GLORIA","EVELYN","JEAN","CHERYL","MILDRED","KATHERINE","JOAN","ASHLEY","JUDITH","ROSE","JANICE","KELLY","NICOLE","JUDY",
"CHRISTINA","KATHY","THERESA","BEVERLY","DENISE","TAMMY","IRENE","JANE","LORI","RACHEL","MARILYN","ANDREA","KATHRYN","LOUISE",
"SARA","ANNE","JACQUELINE","WANDA","BONNIE","JULIA","RUBY","LOIS","TINA","PHYLLIS","NORMA","PAULA","DIANA","ANNIE","LILLIAN",
"EMILY","ROBIN","PEGGY","CRYSTAL","GLADYS","RITA","DAWN","CONNIE","FLORENCE","TRACY","EDNA","TIFFANY","CARMEN","ROSA","CINDY",
"GRACE","WENDY","VICTORIA","EDITH","KIM","SHERRY","SYLVIA","JOSEPHINE","THELMA","SHANNON","SHEILA","ETHEL","ELLEN","ELAINE",
"MARJORIE","CARRIE","CHARLOTTE","MONICA","ESTHER","PAULINE","EMMA","JUANITA","ANITA","RHONDA","HAZEL","AMBER","EVA","DEBBIE",
"APRIL","LESLIE","CLARA","LUCILLE","JAMIE","JOANNE","ELEANOR","VALERIE","DANIELLE","MEGAN","ALICIA","SUZANNE","MICHELE","GAIL",
"BERTHA","DARLENE","VERONICA","JILL","ERIN","GERALDINE","LAUREN","CATHY","JOANN","LORRAINE","LYNN","SALLY","REGINA","ERICA",
"BEATRICE","DOLORES","BERNICE","AUDREY","YVONNE","ANNETTE","JUNE","SAMANTHA","MARION","DANA","STACY","ANA","RENEE","IDA","VIVIAN",
"ROBERTA","HOLLY","BRITTANY","MELANIE","LORETTA","YOLANDA","JEANETTE","LAURIE","KATIE","KRISTEN","VANESSA","ALMA","SUE","ELSIE",
"BETH","JEANNE","VICKI","CARLA","TARA","ROSEMARY","EILEEN","TERRI","GERTRUDE","LUCY","TONYA","ELLA","STACEY","WILMA","GINA",
"KRISTIN","JESSIE","NATALIE","AGNES","VERA","WILLIE","CHARLENE","BESSIE","DELORES","MELINDA","PEARL","ARLENE","MAUREEN","COLLEEN",
"ALLISON","TAMARA","JOY","GEORGIA","CONSTANCE","LILLIE","CLAUDIA","JACKIE","MARCIA","TANYA","NELLIE","MINNIE","MARLENE","HEIDI",
"GLENDA","LYDIA","VIOLA","COURTNEY","MARIAN","STELLA","CAROLINE","DORA","JO","VICKIE","MATTIE","TERRY","MAXINE","IRMA","MABEL",
"MARSHA","MYRTLE","LENA","CHRISTY","DEANNA","PATSY","HILDA","GWENDOLYN","JENNIE","NORA","MARGIE","NINA","CASSANDRA","LEAH","PENNY",
"KAY","PRISCILLA","NAOMI","CAROLE","BRANDY","OLGA","BILLIE","DIANNE","TRACEY","LEONA","JENNY","FELICIA","SONIA","MIRIAM","VELMA",
"BECKY","BOBBIE","VIOLET","KRISTINA","TONI","MISTY","MAE","SHELLY","DAISY","RAMONA","SHERRI","ERIKA","KATRINA","CLAIRE","LINDSEY",
"LINDSAY","GENEVA","GUADALUPE","BELINDA","MARGARITA","SHERYL","CORA","FAYE","ADA","NATASHA","SABRINA","ISABEL","MARGUERITE",
"HATTIE","HARRIET","MOLLY","CECILIA","KRISTI","BRANDI","BLANCHE","SANDY","ROSIE","JOANNA","IRIS","EUNICE","ANGIE","INEZ","LYNDA",
"MADELINE","AMELIA","ALBERTA","GENEVIEVE","MONIQUE","JODI","JANIE","MAGGIE","KAYLA","SONYA","JAN","LEE","KRISTINE","CANDACE",
"FANNIE","MARYANN","OPAL","ALISON","YVETTE","MELODY","LUZ","SUSIE","OLIVIA","FLORA","SHELLEY","KRISTY","MAMIE","LULA","LOLA",
"VERNA","BEULAH","ANTOINETTE","CANDICE","JUANA","JEANNETTE","PAM","KELLI","HANNAH","WHITNEY","BRIDGET","KARLA","CELIA","LATOYA",
"PATTY","SHELIA","GAYLE","DELLA","VICKY","LYNNE","SHERI","MARIANNE","KARA","JACQUELYN","ERMA","BLANCA","MYRA","LETICIA","PAT",
"KRISTA","ROXANNE","ANGELICA","JOHNNIE","ROBYN","FRANCIS","ADRIENNE","ROSALIE","ALEXANDRA","BROOKE","BETHANY","SADIE","BERNADETTE",
"TRACI","JODY","KENDRA","JASMINE","NICHOLE","RACHAEL","CHELSEA","MABLE","ERNESTINE","MURIEL","MARCELLA","ELENA","KRYSTAL",
"ANGELINA","NADINE","KARI","ESTELLE","DIANNA","PAULETTE","LORA","MONA","DOREEN","ROSEMARIE","ANGEL","DESIREE","ANTONIA","HOPE",
"GINGER","JANIS","BETSY","CHRISTIE","FREDA","MERCEDES","MEREDITH","LYNETTE","TERI","CRISTINA","EULA","LEIGH","MEGHAN","SOPHIA",
"ELOISE","ROCHELLE","GRETCHEN","CECELIA","RAQUEL","HENRIETTA","ALYSSA","JANA","KELLEY","GWEN","KERRY","JENNA","TRICIA","LAVERNE",
"OLIVE","ALEXIS","TASHA","SILVIA","ELVIRA","CASEY","DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE","SONJA","LILA","LANA","DARLA",
"MAY","MINDY","ESSIE","MANDY","LORENE","ELSA","JOSEFINA","JEANNIE","MIRANDA","DIXIE","LUCIA","MARTA","FAITH","LELA","JOHANNA",
"SHARI","CAMILLE","TAMI","SHAWNA","ELISA","EBONY","MELBA","ORA","NETTIE","TABITHA","OLLIE","JAIME","WINIFRED","KRISTIE","MARINA",
"ALISHA","AIMEE","RENA","MYRNA","MARLA","TAMMIE","LATASHA","BONITA","PATRICE","RONDA","SHERRIE","ADDIE","FRANCINE","DELORIS",
"STACIE","ADRIANA","CHERI","SHELBY","ABIGAIL","CELESTE","JEWEL","CARA","ADELE","REBEKAH","LUCINDA","DORTHY","CHRIS","EFFIE",
"TRINA","REBA","SHAWN","SALLIE","AURORA","LENORA","ETTA","LOTTIE","KERRI","TRISHA","NIKKI","ESTELLA","FRANCISCA","JOSIE","TRACIE",
"MARISSA","KARIN","BRITTNEY","JANELLE","LOURDES","LAUREL","HELENE","FERN","ELVA","CORINNE","KELSEY","INA","BETTIE","ELISABETH",
"AIDA","CAITLIN","INGRID","IVA","EUGENIA","CHRISTA","GOLDIE","CASSIE","MAUDE","JENIFER","THERESE","FRANKIE","DENA","LORNA",
"JANETTE","LATONYA","CANDY","MORGAN","CONSUELO","TAMIKA","ROSETTA","DEBORA","CHERIE","POLLY","DINA","JEWELL","FAY","JILLIAN",
"DOROTHEA","NELL","TRUDY","ESPERANZA","PATRICA","KIMBERLEY","SHANNA","HELENA","CAROLINA","CLEO","STEFANIE","ROSARIO","OLA",
"JANINE","MOLLIE","LUPE","ALISA","LOU","MARIBEL","SUSANNE","BETTE","SUSANA","ELISE","CECILE","ISABELLE","LESLEY","JOCELYN",
"PAIGE","JONI","RACHELLE","LEOLA","DAPHNE","ALTA","ESTER","PETRA","GRACIELA","IMOGENE","JOLENE","KEISHA","LACEY","GLENNA",
"GABRIELA","KERI","URSULA","LIZZIE","KIRSTEN","SHANA","ADELINE","MAYRA","JAYNE","JACLYN","GRACIE","SONDRA","CARMELA","MARISA",
"ROSALIND","CHARITY","TONIA","BEATRIZ","MARISOL","CLARICE","JEANINE","SHEENA","ANGELINE","FRIEDA","LILY","ROBBIE","SHAUNA",
"MILLIE","CLAUDETTE","CATHLEEN","ANGELIA","GABRIELLE","AUTUMN","KATHARINE","SUMMER","JODIE","STACI","LEA","CHRISTI","JIMMIE",
"JUSTINE","ELMA","LUELLA","MARGRET","DOMINIQUE","SOCORRO","RENE","MARTINA","MARGO","MAVIS","CALLIE","BOBBI","MARITZA","LUCILE",
"LEANNE","JEANNINE","DEANA","AILEEN","LORIE","LADONNA","WILLA","MANUELA","GALE","SELMA","DOLLY","SYBIL","ABBY","LARA","DALE",
"IVY","DEE","WINNIE","MARCY","LUISA","JERI","MAGDALENA","OFELIA","MEAGAN","AUDRA","MATILDA","LEILA","CORNELIA","BIANCA","SIMONE",
"BETTYE","RANDI","VIRGIE","LATISHA","BARBRA","GEORGINA","ELIZA","LEANN","BRIDGETTE","RHODA","HALEY","ADELA","NOLA","BERNADINE",
"FLOSSIE","ILA","GRETA","RUTHIE","NELDA","MINERVA","LILLY","TERRIE","LETHA","HILARY","ESTELA","VALARIE","BRIANNA","ROSALYN",
"EARLINE","CATALINA","AVA","MIA","CLARISSA","LIDIA","CORRINE","ALEXANDRIA","CONCEPCION","TIA","SHARRON","RAE","DONA","ERICKA",
"JAMI","ELNORA","CHANDRA","LENORE","NEVA","MARYLOU","MELISA","TABATHA","SERENA","AVIS","ALLIE","SOFIA","JEANIE","ODESSA","NANNIE",
"HARRIETT","LORAINE","PENELOPE","MILAGROS","EMILIA","BENITA","ALLYSON","ASHLEE","TANIA","TOMMIE","ESMERALDA","KARINA","EVE",
"PEARLIE","ZELMA","MALINDA","NOREEN","TAMEKA","SAUNDRA","HILLARY","AMIE","ALTHEA","ROSALINDA","JORDAN","LILIA","ALANA","GAY",
"CLARE","ALEJANDRA","ELINOR","MICHAEL","LORRIE","JERRI","DARCY","EARNESTINE","CARMELLA","TAYLOR","NOEMI","MARCIE","LIZA",
"ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA","TANISHA","KATY","JULIANNE","JOHN","LAKISHA","EDWINA",
"MARICELA","MARGERY","KENYA","DOLLIE","ROXIE","ROSLYN","KATHRINE","NANETTE","CHARMAINE","LAVONNE","ILENE","KRIS","TAMMI",
"SUZETTE","CORINE","KAYE","JERRY","MERLE","CHRYSTAL","LINA","DEANNE","LILIAN","JULIANA","ALINE","LUANN","KASEY","MARYANNE",
"EVANGELINE","COLETTE","MELVA","LAWANDA","YESENIA","NADIA","MADGE","KATHIE","EDDIE","OPHELIA","VALERIA","NONA","MITZI","MARI",
"GEORGETTE","CLAUDINE","FRAN","ALISSA","ROSEANN","LAKEISHA","SUSANNA","REVA","DEIDRE","CHASITY","SHEREE","CARLY","JAMES","ELVIA",
"ALYCE","DEIRDRE","GENA","BRIANA","ARACELI","KATELYN","ROSANNE","WENDI","TESSA","BERTA","MARVA","IMELDA","MARIETTA","MARCI",
"LEONOR","ARLINE","SASHA","MADELYN","JANNA","JULIETTE","DEENA","AURELIA","JOSEFA","AUGUSTA","LILIANA","YOUNG","CHRISTIAN",
"LESSIE","AMALIA","SAVANNAH","ANASTASIA","VILMA","NATALIA","ROSELLA","LYNNETTE","CORINA","ALFREDA","LEANNA","CAREY","AMPARO",
"COLEEN","TAMRA","AISHA","WILDA","KARYN","CHERRY","QUEEN","MAURA","MAI","EVANGELINA","ROSANNA","HALLIE","ERNA","ENID","MARIANA",
"LACY","JULIET","JACKLYN","FREIDA","MADELEINE","MARA","HESTER","CATHRYN","LELIA","CASANDRA","BRIDGETT","ANGELITA","JANNIE",
"DIONNE","ANNMARIE","KATINA","BERYL","PHOEBE","MILLICENT","KATHERYN","DIANN","CARISSA","MARYELLEN","LIZ","LAURI","HELGA","GILDA",
"ADRIAN","RHEA","MARQUITA","HOLLIE","TISHA","TAMERA","ANGELIQUE","FRANCESCA","BRITNEY","KAITLIN","LOLITA","FLORINE","ROWENA",
"REYNA","TWILA","FANNY","JANELL","INES","CONCETTA","BERTIE","ALBA","BRIGITTE","ALYSON","VONDA","PANSY","ELBA","NOELLE","LETITIA",
"KITTY","DEANN","BRANDIE","LOUELLA","LETA","FELECIA","SHARLENE","LESA","BEVERLEY","ROBERT","ISABELLA","HERMINIA","TERRA","CELINA",
"TORI","OCTAVIA","JADE","DENICE","GERMAINE","SIERRA","MICHELL","CORTNEY","NELLY","DORETHA","SYDNEY","DEIDRA","MONIKA","LASHONDA",
"JUDI","CHELSEY","ANTIONETTE","MARGOT","BOBBY","ADELAIDE","NAN","LEEANN","ELISHA","DESSIE","LIBBY","KATHI","GAYLA","LATANYA",
"MINA","MELLISA","KIMBERLEE","JASMIN","RENAE","ZELDA","ELDA","MA","JUSTINA","GUSSIE","EMILIE","CAMILLA","ABBIE","ROCIO","KAITLYN",
"JESSE","EDYTHE","ASHLEIGH","SELINA","LAKESHA","GERI","ALLENE","PAMALA","MICHAELA","DAYNA","CARYN","ROSALIA","SUN","JACQULINE",
"REBECA","MARYBETH","KRYSTLE","IOLA","DOTTIE","BENNIE","BELLE","AUBREY","GRISELDA","ERNESTINA","ELIDA","ADRIANNE","DEMETRIA",
"DELMA","CHONG","JAQUELINE","DESTINY","ARLEEN","VIRGINA","RETHA","FATIMA","TILLIE","ELEANORE","CARI","TREVA","BIRDIE","WILHELMINA",
"ROSALEE","MAURINE","LATRICE","YONG","JENA","TARYN","ELIA","DEBBY","MAUDIE","JEANNA","DELILAH","CATRINA","SHONDA","HORTENCIA",
"THEODORA","TERESITA","ROBBIN","DANETTE","MARYJANE","FREDDIE","DELPHINE","BRIANNE","NILDA","DANNA","CINDI","BESS","IONA","HANNA",
"ARIEL","WINONA","VIDA","ROSITA","MARIANNA","WILLIAM","RACHEAL","GUILLERMINA","ELOISA","CELESTINE","CAREN","MALISSA","LONA",
"CHANTEL","SHELLIE","MARISELA","LEORA","AGATHA","SOLEDAD","MIGDALIA","IVETTE","CHRISTEN","ATHENA","JANEL","CHLOE","VEDA","PATTIE",
"TESSIE","TERA","MARILYNN","LUCRETIA","KARRIE","DINAH","DANIELA","ALECIA","ADELINA","VERNICE","SHIELA","PORTIA","MERRY","LASHAWN",
"DEVON","DARA","TAWANA","OMA","VERDA","CHRISTIN","ALENE","ZELLA","SANDI","RAFAELA","MAYA","KIRA","CANDIDA","ALVINA","SUZAN",
"SHAYLA","LYN","LETTIE","ALVA","SAMATHA","ORALIA","MATILDE","MADONNA","LARISSA","VESTA","RENITA","INDIA","DELOIS","SHANDA",
"PHILLIS","LORRI","ERLINDA","CRUZ","CATHRINE","BARB","ZOE","ISABELL","IONE","GISELA","CHARLIE","VALENCIA","ROXANNA","MAYME",
"KISHA","ELLIE","MELLISSA","DORRIS","DALIA","BELLA","ANNETTA","ZOILA","RETA","REINA","LAURETTA","KYLIE","CHRISTAL","PILAR",
"CHARLA","ELISSA","TIFFANI","TANA","PAULINA","LEOTA","BREANNA","JAYME","CARMEL","VERNELL","TOMASA","MANDI","DOMINGA","SANTA",
"MELODIE","LURA","ALEXA","TAMELA","RYAN","MIRNA","KERRIE","VENUS","NOEL","FELICITA","CRISTY","CARMELITA","BERNIECE","ANNEMARIE",
"TIARA","ROSEANNE","MISSY","CORI","ROXANA","PRICILLA","KRISTAL","JUNG","ELYSE","HAYDEE","ALETHA","BETTINA","MARGE","GILLIAN",
"FILOMENA","CHARLES","ZENAIDA","HARRIETTE","CARIDAD","VADA","UNA","ARETHA","PEARLINE","MARJORY","MARCELA","FLOR","EVETTE",
"ELOUISE","ALINA","TRINIDAD","DAVID","DAMARIS","CATHARINE","CARROLL","BELVA","NAKIA","MARLENA","LUANNE","LORINE","KARON","DORENE",
"DANITA","BRENNA","TATIANA","SAMMIE","LOUANN","LOREN","JULIANNA","ANDRIA","PHILOMENA","LUCILA","LEONORA","DOVIE","ROMONA","MIMI",
"JACQUELIN","GAYE","TONJA","MISTI","JOE","GENE","CHASTITY","STACIA","ROXANN","MICAELA","NIKITA","MEI","VELDA","MARLYS","JOHNNA",
"AURA","LAVERN","IVONNE","HAYLEY","NICKI","MAJORIE","HERLINDA","GEORGE","ALPHA","YADIRA","PERLA","GREGORIA","DANIEL","ANTONETTE",
"SHELLI","MOZELLE","MARIAH","JOELLE","CORDELIA","JOSETTE","CHIQUITA","TRISTA","LOUIS","LAQUITA","GEORGIANA","CANDI","SHANON",
"LONNIE","HILDEGARD","CECIL","VALENTINA","STEPHANY","MAGDA","KAROL","GERRY","GABRIELLA","TIANA","ROMA","RICHELLE","RAY",
"PRINCESS","OLETA","JACQUE","IDELLA","ALAINA","SUZANNA","JOVITA","BLAIR","TOSHA","RAVEN","NEREIDA","MARLYN","KYLA","JOSEPH",
"DELFINA","TENA","STEPHENIE","SABINA","NATHALIE","MARCELLE","GERTIE","DARLEEN","THEA","SHARONDA","SHANTEL","BELEN","VENESSA",
"ROSALINA","ONA","GENOVEVA","COREY","CLEMENTINE","ROSALBA","RENATE","RENATA","MI","IVORY","GEORGIANNA","FLOY","DORCAS","ARIANA",
"TYRA","THEDA","MARIAM","JULI","JESICA","DONNIE","VIKKI","VERLA","ROSELYN","MELVINA","JANNETTE","GINNY","DEBRAH","CORRIE","ASIA",
"VIOLETA","MYRTIS","LATRICIA","COLLETTE","CHARLEEN","ANISSA","VIVIANA","TWYLA","PRECIOUS","NEDRA","LATONIA","LAN","HELLEN",
"FABIOLA","ANNAMARIE","ADELL","SHARYN","CHANTAL","NIKI","MAUD","LIZETTE","LINDY","KIA","KESHA","JEANA","DANELLE","CHARLINE",
"CHANEL","CARROL","VALORIE","LIA","DORTHA","CRISTAL","SUNNY","LEONE","LEILANI","GERRI","DEBI","ANDRA","KESHIA","IMA","EULALIA",
"EASTER","DULCE","NATIVIDAD","LINNIE","KAMI","GEORGIE","CATINA","BROOK","ALDA","WINNIFRED","SHARLA","RUTHANN","MEAGHAN",
"MAGDALENE","LISSETTE","ADELAIDA","VENITA","TRENA","SHIRLENE","SHAMEKA","ELIZEBETH","DIAN","SHANTA","MICKEY","LATOSHA","CARLOTTA",
"WINDY","SOON","ROSINA","MARIANN","LEISA","JONNIE","DAWNA","CATHIE","BILLY","ASTRID","SIDNEY","LAUREEN","JANEEN","HOLLI","FAWN",
"VICKEY","TERESSA","SHANTE","RUBYE","MARCELINA","CHANDA","CARY","TERESE","SCARLETT","MARTY","MARNIE","LULU","LISETTE","JENIFFER",
"ELENOR","DORINDA","DONITA","CARMAN","BERNITA","ALTAGRACIA","ALETA","ADRIANNA","ZORAIDA","RONNIE","NICOLA","LYNDSEY","KENDALL",
"JANINA","CHRISSY","AMI","STARLA","PHYLIS","PHUONG","KYRA","CHARISSE","BLANCH","SANJUANITA","RONA","NANCI","MARILEE","MARANDA",
"CORY","BRIGETTE","SANJUANA","MARITA","KASSANDRA","JOYCELYN","IRA","FELIPA","CHELSIE","BONNY","MIREYA","LORENZA","KYONG","ILEANA",
"CANDELARIA","TONY","TOBY","SHERIE","OK","MARK","LUCIE","LEATRICE","LAKESHIA","GERDA","EDIE","BAMBI","MARYLIN","LAVON","HORTENSE",
"GARNET","EVIE","TRESSA","SHAYNA","LAVINA","KYUNG","JEANETTA","SHERRILL","SHARA","PHYLISS","MITTIE","ANABEL","ALESIA","THUY",
"TAWANDA","RICHARD","JOANIE","TIFFANIE","LASHANDA","KARISSA","ENRIQUETA","DARIA","DANIELLA","CORINNA","ALANNA","ABBEY","ROXANE",
"ROSEANNA","MAGNOLIA","LIDA","KYLE","JOELLEN","ERA","CORAL","CARLEEN","TRESA","PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE",
"CARINA","NOVA","MELINA","MARQUERITE","MARGARETTE","JOSEPHINA","EVONNE","DEVIN","CINTHIA","ALBINA","TOYA","TAWNYA","SHERITA",
"SANTOS","MYRIAM","LIZABETH","LISE","KEELY","JENNI","GISELLE","CHERYLE","ARDITH","ARDIS","ALESHA","ADRIANE","SHAINA","LINNEA",
"KAROLYN","HONG","FLORIDA","FELISHA","DORI","DARCI","ARTIE","ARMIDA","ZOLA","XIOMARA","VERGIE","SHAMIKA","NENA","NANNETTE","MAXIE",
"LOVIE","JEANE","JAIMIE","INGE","FARRAH","ELAINA","CAITLYN","STARR","FELICITAS","CHERLY","CARYL","YOLONDA","YASMIN","TEENA",
"PRUDENCE","PENNIE","NYDIA","MACKENZIE","ORPHA","MARVEL","LIZBETH","LAURETTE","JERRIE","HERMELINDA","CAROLEE","TIERRA","MIRIAN",
"META","MELONY","KORI","JENNETTE","JAMILA","ENA","ANH","YOSHIKO","SUSANNAH","SALINA","RHIANNON","JOLEEN","CRISTINE","ASHTON",
"ARACELY","TOMEKA","SHALONDA","MARTI","LACIE","KALA","JADA","ILSE","HAILEY","BRITTANI","ZONA","SYBLE","SHERRYL","RANDY","NIDIA",
"MARLO","KANDICE","KANDI","DEB","DEAN","AMERICA","ALYCIA","TOMMY","RONNA","NORENE","MERCY","JOSE","INGEBORG","GIOVANNA","GEMMA",
"CHRISTEL","AUDRY","ZORA","VITA","VAN","TRISH","STEPHAINE","SHIRLEE","SHANIKA","MELONIE","MAZIE","JAZMIN","INGA","HOA","HETTIE",
"GERALYN","FONDA","ESTRELLA","ADELLA","SU","SARITA","RINA","MILISSA","MARIBETH","GOLDA","EVON","ETHELYN","ENEDINA","CHERISE",
"CHANA","VELVA","TAWANNA","SADE","MIRTA","LI","KARIE","JACINTA","ELNA","DAVINA","CIERRA","ASHLIE","ALBERTHA","TANESHA","STEPHANI",
"NELLE","MINDI","LU","LORINDA","LARUE","FLORENE","DEMETRA","DEDRA","CIARA","CHANTELLE","ASHLY","SUZY","ROSALVA","NOELIA","LYDA",
"LEATHA","KRYSTYNA","KRISTAN","KARRI","DARLINE","DARCIE","CINDA","CHEYENNE","CHERRIE","AWILDA","ALMEDA","ROLANDA","LANETTE",
"JERILYN","GISELE","EVALYN","CYNDI","CLETA","CARIN","ZINA","ZENA","VELIA","TANIKA","PAUL","CHARISSA","THOMAS","TALIA","MARGARETE",
"LAVONDA","KAYLEE","KATHLENE","JONNA","IRENA","ILONA","IDALIA","CANDIS","CANDANCE","BRANDEE","ANITRA","ALIDA","SIGRID","NICOLETTE",
"MARYJO","LINETTE","HEDWIG","CHRISTIANA","CASSIDY","ALEXIA","TRESSIE","MODESTA","LUPITA","LITA","GLADIS","EVELIA","DAVIDA",
"CHERRI","CECILY","ASHELY","ANNABEL","AGUSTINA","WANITA","SHIRLY","ROSAURA","HULDA","EUN","BAILEY","YETTA","VERONA","THOMASINA",
"SIBYL","SHANNAN","MECHELLE","LUE","LEANDRA","LANI","KYLEE","KANDY","JOLYNN","FERNE","EBONI","CORENE","ALYSIA","ZULA","NADA",
"MOIRA","LYNDSAY","LORRETTA","JUAN","JAMMIE","HORTENSIA","GAYNELL","CAMERON","ADRIA","VINA","VICENTA","TANGELA","STEPHINE",
"NORINE","NELLA","LIANA","LESLEE","KIMBERELY","ILIANA","GLORY","FELICA","EMOGENE","ELFRIEDE","EDEN","EARTHA","CARMA","BEA","OCIE",
"MARRY","LENNIE","KIARA","JACALYN","CARLOTA","ARIELLE","YU","STAR","OTILIA","KIRSTIN","KACEY","JOHNETTA","JOEY","JOETTA",
"JERALDINE","JAUNITA","ELANA","DORTHEA","CAMI","AMADA","ADELIA","VERNITA","TAMAR","SIOBHAN","RENEA","RASHIDA","OUIDA","ODELL",
"NILSA","MERYL","KRISTYN","JULIETA","DANICA","BREANNE","AUREA","ANGLEA","SHERRON","ODETTE","MALIA","LORELEI","LIN","LEESA",
"KENNA","KATHLYN","FIONA","CHARLETTE","SUZIE","SHANTELL","SABRA","RACQUEL","MYONG","MIRA","MARTINE","LUCIENNE","LAVADA","JULIANN",
"JOHNIE","ELVERA","DELPHIA","CLAIR","CHRISTIANE","CHAROLETTE","CARRI","AUGUSTINE","ASHA","ANGELLA","PAOLA","NINFA","LEDA","LAI",
"EDA","SUNSHINE","STEFANI","SHANELL","PALMA","MACHELLE","LISSA","KECIA","KATHRYNE","KARLENE","JULISSA","JETTIE","JENNIFFER","HUI",
"CORRINA","CHRISTOPHER","CAROLANN","ALENA","TESS","ROSARIA","MYRTICE","MARYLEE","LIANE","KENYATTA","JUDIE","JANEY","IN","ELMIRA",
"ELDORA","DENNA","CRISTI","CATHI","ZAIDA","VONNIE","VIVA","VERNIE","ROSALINE","MARIELA","LUCIANA","LESLI","KARAN","FELICE",
"DENEEN","ADINA","WYNONA","TARSHA","SHERON","SHASTA","SHANITA","SHANI","SHANDRA","RANDA","PINKIE","PARIS","NELIDA","MARILOU",
"LYLA","LAURENE","LACI","JOI","JANENE","DOROTHA","DANIELE","DANI","CAROLYNN","CARLYN","BERENICE","AYESHA","ANNELIESE","ALETHEA",
"THERSA","TAMIKO","RUFINA","OLIVA","MOZELL","MARYLYN","MADISON","KRISTIAN","KATHYRN","KASANDRA","KANDACE","JANAE","GABRIEL",
"DOMENICA","DEBBRA","DANNIELLE","CHUN","BUFFY","BARBIE","ARCELIA","AJA","ZENOBIA","SHAREN","SHAREE","PATRICK","PAGE","MY",
"LAVINIA","KUM","KACIE","JACKELINE","HUONG","FELISA","EMELIA","ELEANORA","CYTHIA","CRISTIN","CLYDE","CLARIBEL","CARON",
"ANASTACIA","ZULMA","ZANDRA","YOKO","TENISHA","SUSANN","SHERILYN","SHAY","SHAWANDA","SABINE","ROMANA","MATHILDA","LINSEY",
"KEIKO","JOANA","ISELA","GRETTA","GEORGETTA","EUGENIE","DUSTY","DESIRAE","DELORA","CORAZON","ANTONINA","ANIKA","WILLENE","TRACEE",
"TAMATHA","REGAN","NICHELLE","MICKIE","MAEGAN","LUANA","LANITA","KELSIE","EDELMIRA","BREE","AFTON","TEODORA","TAMIE","SHENA",
"MEG","LINH","KELI","KACI","DANYELLE","BRITT","ARLETTE","ALBERTINE","ADELLE","TIFFINY","STORMY","SIMONA","NUMBERS","NICOLASA",
"NICHOL","NIA","NAKISHA","MEE","MAIRA","LOREEN","KIZZY","JOHNNY","JAY","FALLON","CHRISTENE","BOBBYE","ANTHONY","YING","VINCENZA",
"TANJA","RUBIE","RONI","QUEENIE","MARGARETT","KIMBERLI","IRMGARD","IDELL","HILMA","EVELINA","ESTA","EMILEE","DENNISE","DANIA",
"CARL","CARIE","ANTONIO","WAI","SANG","RISA","RIKKI","PARTICIA","MUI","MASAKO","MARIO","LUVENIA","LOREE","LONI","LIEN","KEVIN",
"GIGI","FLORENCIA","DORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER","TOMIKA","SHARITA","RANA","NIKOLE","NEOMA","MARGARITE",
"MADALYN","LUCINA","LAILA","KALI","JENETTE","GABRIELE","EVELYNE","ELENORA","CLEMENTINA","ALEJANDRINA","ZULEMA","VIOLETTE",
"VANNESSA","THRESA","RETTA","PIA","PATIENCE","NOELLA","NICKIE","JONELL","DELTA","CHUNG","CHAYA","CAMELIA","BETHEL","ANYA",
"ANDREW","THANH","SUZANN","SPRING","SHU","MILA","LILLA","LAVERNA","KEESHA","KATTIE","GIA","GEORGENE","EVELINE","ESTELL","ELIZBETH",
"VIVIENNE","VALLIE","TRUDIE","STEPHANE","MICHEL","MAGALY","MADIE","KENYETTA","KARREN","JANETTA","HERMINE","HARMONY","DRUCILLA",
"DEBBI","CELESTINA","CANDIE","BRITNI","BECKIE","AMINA","ZITA","YUN","YOLANDE","VIVIEN","VERNETTA","TRUDI","SOMMER","PEARLE",
"PATRINA","OSSIE","NICOLLE","LOYCE","LETTY","LARISA","KATHARINA","JOSELYN","JONELLE","JENELL","IESHA","HEIDE","FLORINDA",
"FLORENTINA","FLO","ELODIA","DORINE","BRUNILDA","BRIGID","ASHLI","ARDELLA","TWANA","THU","TARAH","SUNG","SHEA","SHAVON","SHANE",
"SERINA","RAYNA","RAMONITA","NGA","MARGURITE","LUCRECIA","KOURTNEY","KATI","JESUS","JESENIA","DIAMOND","CRISTA","AYANA","ALICA",
"ALIA","VINNIE","SUELLEN","ROMELIA","RACHELL","PIPER","OLYMPIA","MICHIKO","KATHALEEN","JOLIE","JESSI","JANESSA","HANA","HA",
"ELEASE","CARLETTA","BRITANY","SHONA","SALOME","ROSAMOND","REGENA","RAINA","NGOC","NELIA","LOUVENIA","LESIA","LATRINA","LATICIA",
"LARHONDA","JINA","JACKI","HOLLIS","HOLLEY","EMMY","DEEANN","CORETTA","ARNETTA","VELVET","THALIA","SHANICE","NETA","MIKKI","MICKI",
"LONNA","LEANA","LASHUNDA","KILEY","JOYE","JACQULYN","IGNACIA","HYUN","HIROKO","HENRY","HENRIETTE","ELAYNE","DELINDA","DARNELL",
"DAHLIA","COREEN","CONSUELA","CONCHITA","CELINE","BABETTE","AYANNA","ANETTE","ALBERTINA","SKYE","SHAWNEE","SHANEKA","QUIANA",
"PAMELIA","MIN","MERRI","MERLENE","MARGIT","KIESHA","KIERA","KAYLENE","JODEE","JENISE","ERLENE","EMMIE","ELSE","DARYL","DALILA",
"DAISEY","CODY","CASIE","BELIA","BABARA","VERSIE","VANESA","SHELBA","SHAWNDA","SAM","NORMAN","NIKIA","NAOMA","MARNA","MARGERET",
"MADALINE","LAWANA","KINDRA","JUTTA","JAZMINE","JANETT","HANNELORE","GLENDORA","GERTRUD","GARNETT","FREEDA","FREDERICA","FLORANCE",
"FLAVIA","DENNIS","CARLINE","BEVERLEE","ANJANETTE","VALDA","TRINITY","TAMALA","STEVIE","SHONNA","SHA","SARINA","ONEIDA","MICAH",
"MERILYN","MARLEEN","LURLINE","LENNA","KATHERIN","JIN","JENI","HAE","GRACIA","GLADY","FARAH","ERIC","ENOLA","EMA","DOMINQUE",
"DEVONA","DELANA","CECILA","CAPRICE","ALYSHA","ALI","ALETHIA","VENA","THERESIA","TAWNY","SONG","SHAKIRA","SAMARA","SACHIKO",
"RACHELE","PAMELLA","NICKY","MARNI","MARIEL","MAREN","MALISA","LIGIA","LERA","LATORIA","LARAE","KIMBER","KATHERN","KAREY",
"JENNEFER","JANETH","HALINA","FREDIA","DELISA","DEBROAH","CIERA","CHIN","ANGELIKA","ANDREE","ALTHA","YEN","VIVAN","TERRESA",
"TANNA","SUK","SUDIE","SOO","SIGNE","SALENA","RONNI","REBBECCA","MYRTIE","MCKENZIE","MALIKA","MAIDA","LOAN","LEONARDA","KAYLEIGH",
"FRANCE","ETHYL","ELLYN","DAYLE","CAMMIE","BRITTNI","BIRGIT","AVELINA","ASUNCION","ARIANNA","AKIKO","VENICE","TYESHA","TONIE",
"TIESHA","TAKISHA","STEFFANIE","SINDY","SANTANA","MEGHANN","MANDA","MACIE","LADY","KELLYE","KELLEE","JOSLYN","JASON","INGER",
"INDIRA","GLINDA","GLENNIS","FERNANDA","FAUSTINA","ENEIDA","ELICIA","DOT","DIGNA","DELL","ARLETTA","ANDRE","WILLIA","TAMMARA",
"TABETHA","SHERRELL","SARI","REFUGIO","REBBECA","PAULETTA","NIEVES","NATOSHA","NAKITA","MAMMIE","KENISHA","KAZUKO","KASSIE",
"GARY","EARLEAN","DAPHINE","CORLISS","CLOTILDE","CAROLYNE","BERNETTA","AUGUSTINA","AUDREA","ANNIS","ANNABELL","YAN","TENNILLE",
"TAMICA","SELENE","SEAN","ROSANA","REGENIA","QIANA","MARKITA","MACY","LEEANNE","LAURINE","KYM","JESSENIA","JANITA","GEORGINE",
"GENIE","EMIKO","ELVIE","DEANDRA","DAGMAR","CORIE","COLLEN","CHERISH","ROMAINE","PORSHA","PEARLENE","MICHELINE","MERNA","MARGORIE",
"MARGARETTA","LORE","KENNETH","JENINE","HERMINA","FREDERICKA","ELKE","DRUSILLA","DORATHY","DIONE","DESIRE","CELENA","BRIGIDA",
"ANGELES","ALLEGRA","THEO","TAMEKIA","SYNTHIA","STEPHEN","SOOK","SLYVIA","ROSANN","REATHA","RAYE","MARQUETTA","MARGART","LING",
"LAYLA","KYMBERLY","KIANA","KAYLEEN","KATLYN","KARMEN","JOELLA","IRINA","EMELDA","ELENI","DETRA","CLEMMIE","CHERYLL","CHANTELL",
"CATHEY","ARNITA","ARLA","ANGLE","ANGELIC","ALYSE","ZOFIA","THOMASINE","TENNIE","SON","SHERLY","SHERLEY","SHARYL","REMEDIOS",
"PETRINA","NICKOLE","MYUNG","MYRLE","MOZELLA","LOUANNE","LISHA","LATIA","LANE","KRYSTA","JULIENNE","JOEL","JEANENE","JACQUALINE",
"ISAURA","GWENDA","EARLEEN","DONALD","CLEOPATRA","CARLIE","AUDIE","ANTONIETTA","ALISE","ALEX","VERDELL","VAL","TYLER","TOMOKO",
"THAO","TALISHA","STEVEN","SO","SHEMIKA","SHAUN","SCARLET","SAVANNA","SANTINA","ROSIA","RAEANN","ODILIA","NANA","MINNA","MAGAN",
"LYNELLE","LE","KARMA","JOEANN","IVANA","INELL","ILANA","HYE","HONEY","HEE","GUDRUN","FRANK","DREAMA","CRISSY","CHANTE",
"CARMELINA","ARVILLA","ARTHUR","ANNAMAE","ALVERA","ALEIDA","AARON","YEE","YANIRA","VANDA","TIANNA","TAM","STEFANIA","SHIRA",
"PERRY","NICOL","NANCIE","MONSERRATE","MINH","MELYNDA","MELANY","MATTHEW","LOVELLA","LAURE","KIRBY","KACY","JACQUELYNN","HYON",
"GERTHA","FRANCISCO","ELIANA","CHRISTENA","CHRISTEEN","CHARISE","CATERINA","CARLEY","CANDYCE","ARLENA","AMMIE","YANG","WILLETTE",
"VANITA","TUYET","TINY","SYREETA","SILVA","SCOTT","RONALD","PENNEY","NYLA","MICHAL","MAURICE","MARYAM","MARYA","MAGEN","LUDIE",
"LOMA","LIVIA","LANELL","KIMBERLIE","JULEE","DONETTA","DIEDRA","DENISHA","DEANE","DAWNE","CLARINE","CHERRYL","BRONWYN","BRANDON",
"ALLA","VALERY","TONDA","SUEANN","SORAYA","SHOSHANA","SHELA","SHARLEEN","SHANELLE","NERISSA","MICHEAL","MERIDITH","MELLIE","MAYE",
"MAPLE","MAGARET","LUIS","LILI","LEONILA","LEONIE","LEEANNA","LAVONIA","LAVERA","KRISTEL","KATHEY","KATHE","JUSTIN","JULIAN",
"JIMMY","JANN","ILDA","HILDRED","HILDEGARDE","GENIA","FUMIKO","EVELIN","ERMELINDA","ELLY","DUNG","DOLORIS","DIONNA","DANAE",
"BERNEICE","ANNICE","ALIX","VERENA","VERDIE","TRISTAN","SHAWNNA","SHAWANA","SHAUNNA","ROZELLA","RANDEE","RANAE","MILAGRO",
"LYNELL","LUISE","LOUIE","LOIDA","LISBETH","KARLEEN","JUNITA","JONA","ISIS","HYACINTH","HEDY","GWENN","ETHELENE","ERLINE",
"EDWARD","DONYA","DOMONIQUE","DELICIA","DANNETTE","CICELY","BRANDA","BLYTHE","BETHANN","ASHLYN","ANNALEE","ALLINE","YUKO","VELLA",
"TRANG","TOWANDA","TESHA","SHERLYN","NARCISA","MIGUELINA","MERI","MAYBELL","MARLANA","MARGUERITA","MADLYN","LUNA","LORY",
"LORIANN","LIBERTY","LEONORE","LEIGHANN","LAURICE","LATESHA","LARONDA","KATRICE","KASIE","KARL","KALEY","JADWIGA","GLENNIE",
"GEARLDINE","FRANCINA","EPIFANIA","DYAN","DORIE","DIEDRE","DENESE","DEMETRICE","DELENA","DARBY","CRISTIE","CLEORA","CATARINA",
"CARISA","BERNIE","BARBERA","ALMETA","TRULA","TEREASA","SOLANGE","SHEILAH","SHAVONNE","SANORA","ROCHELL","MATHILDE","MARGARETA",
"MAIA","LYNSEY","LAWANNA","LAUNA","KENA","KEENA","KATIA","JAMEY","GLYNDA","GAYLENE","ELVINA","ELANOR","DANUTA","DANIKA","CRISTEN",
"CORDIE","COLETTA","CLARITA","CARMON","BRYNN","AZUCENA","AUNDREA","ANGELE","YI","WALTER","VERLIE","VERLENE","TAMESHA","SILVANA",
"SEBRINA","SAMIRA","REDA","RAYLENE","PENNI","PANDORA","NORAH","NOMA","MIREILLE","MELISSIA","MARYALICE","LARAINE","KIMBERY",
"KARYL","KARINE","KAM","JOLANDA","JOHANA","JESUSA","JALEESA","JAE","JACQUELYNE","IRISH","ILUMINADA","HILARIA","HANH","GENNIE",
"FRANCIE","FLORETTA","EXIE","EDDA","DREMA","DELPHA","BEV","BARBAR","ASSUNTA","ARDELL","ANNALISA","ALISIA","YUKIKO","YOLANDO",
"WONDA","WEI","WALTRAUD","VETA","TEQUILA","TEMEKA","TAMEIKA","SHIRLEEN","SHENITA","PIEDAD","OZELLA","MIRTHA","MARILU","KIMIKO",
"JULIANE","JENICE","JEN","JANAY","JACQUILINE","HILDE","FE","FAE","EVAN","EUGENE","ELOIS","ECHO","DEVORAH","CHAU","BRINDA",
"BETSEY","ARMINDA","ARACELIS","APRYL","ANNETT","ALISHIA","VEOLA","USHA","TOSHIKO","THEOLA","TASHIA","TALITHA","SHERY","RUDY",
"RENETTA","REIKO","RASHEEDA","OMEGA","OBDULIA","MIKA","MELAINE","MEGGAN","MARTIN","MARLEN","MARGET","MARCELINE","MANA","MAGDALEN",
"LIBRADA","LEZLIE","LEXIE","LATASHIA","LASANDRA","KELLE","ISIDRA","ISA","INOCENCIA","GWYN","FRANCOISE","ERMINIA","ERINN","DIMPLE",
"DEVORA","CRISELDA","ARMANDA","ARIE","ARIANE","ANGELO","ANGELENA","ALLEN","ALIZA","ADRIENE","ADALINE","XOCHITL","TWANNA","TRAN",
"TOMIKO","TAMISHA","TAISHA","SUSY","SIU","RUTHA","ROXY","RHONA","RAYMOND","OTHA","NORIKO","NATASHIA","MERRIE","MELVIN","MARINDA",
"MARIKO","MARGERT","LORIS","LIZZETTE","LEISHA","KAILA","KA","JOANNIE","JERRICA","JENE","JANNET","JANEE","JACINDA","HERTA",
"ELENORE","DORETTA","DELAINE","DANIELL","CLAUDIE","CHINA","BRITTA","APOLONIA","AMBERLY","ALEASE","YURI","YUK","WEN","WANETA",
"UTE","TOMI","SHARRI","SANDIE","ROSELLE","REYNALDA","RAGUEL","PHYLICIA","PATRIA","OLIMPIA","ODELIA","MITZIE","MITCHELL","MISS",
"MINDA","MIGNON","MICA","MENDY","MARIVEL","MAILE","LYNETTA","LAVETTE","LAURYN","LATRISHA","LAKIESHA","KIERSTEN","KARY","JOSPHINE",
"JOLYN","JETTA","JANISE","JACQUIE","IVELISSE","GLYNIS","GIANNA","GAYNELLE","EMERALD","DEMETRIUS","DANYELL","DANILLE","DACIA",
"CORALEE","CHER","CEOLA","BRETT","BELL","ARIANNE","ALESHIA","YUNG","WILLIEMAE","TROY","TRINH","THORA","TAI","SVETLANA","SHERIKA",
"SHEMEKA","SHAUNDA","ROSELINE","RICKI","MELDA","MALLIE","LAVONNA","LATINA","LARRY","LAQUANDA","LALA","LACHELLE","KLARA","KANDIS",
"JOHNA","JEANMARIE","JAYE","HANG","GRAYCE","GERTUDE","EMERITA","EBONIE","CLORINDA","CHING","CHERY","CAROLA","BREANN","BLOSSOM",
"BERNARDINE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA","YON","YESSENIA","TOBI","TASIA","SYLVIE","SHIRL","SHIRELY",
"SHERIDAN","SHELLA","SHANTELLE","SACHA","ROYCE","REBECKA","REAGAN","PROVIDENCIA","PAULENE","MISHA","MIKI","MARLINE","MARICA",
"LORITA","LATOYIA","LASONYA","KERSTIN","KENDA","KEITHA","KATHRIN","JAYMIE","JACK","GRICELDA","GINETTE","ERYN","ELINA","ELFRIEDA",
"DANYEL","CHEREE","CHANELLE","BARRIE","AVERY","AURORE","ANNAMARIA","ALLEEN","AILENE","AIDE","YASMINE","VASHTI","VALENTINE",
"TREASA","TORY","TIFFANEY","SHERYLL","SHARIE","SHANAE","SAU","RAISA","PA","NEDA","MITSUKO","MIRELLA","MILDA","MARYANNA","MARAGRET",
"MABELLE","LUETTA","LORINA","LETISHA","LATARSHA","LANELLE","LAJUANA","KRISSY","KARLY","KARENA","JON","JESSIKA","JERICA","JEANELLE",
"JANUARY","JALISA","JACELYN","IZOLA","IVEY","GREGORY","EUNA","ETHA","DREW","DOMITILA","DOMINICA","DAINA","CREOLA","CARLI","CAMIE",
"BUNNY","BRITTNY","ASHANTI","ANISHA","ALEEN","ADAH","YASUKO","WINTER","VIKI","VALRIE","TONA","TINISHA","THI","TERISA","TATUM",
"TANEKA","SIMONNE","SHALANDA","SERITA","RESSIE","REFUGIA","PAZ","OLENE","NA","MERRILL","MARGHERITA","MANDIE","MAN","MAIRE",
"LYNDIA","LUCI","LORRIANE","LORETA","LEONIA","LAVONA","LASHAWNDA","LAKIA","KYOKO","KRYSTINA","KRYSTEN","KENIA","KELSI","JUDE",
"JEANICE","ISOBEL","GEORGIANN","GENNY","FELICIDAD","EILENE","DEON","DELOISE","DEEDEE","DANNIE","CONCEPTION","CLORA","CHERILYN",
"CHANG","CALANDRA","BERRY","ARMANDINA","ANISA","ULA","TIMOTHY","TIERA","THERESSA","STEPHANIA","SIMA","SHYLA","SHONTA","SHERA",
"SHAQUITA","SHALA","SAMMY","ROSSANA","NOHEMI","NERY","MORIAH","MELITA","MELIDA","MELANI","MARYLYNN","MARISHA","MARIETTE","MALORIE",
"MADELENE","LUDIVINA","LORIA","LORETTE","LORALEE","LIANNE","LEON","LAVENIA","LAURINDA","LASHON","KIT","KIMI","KEILA","KATELYNN",
"KAI","JONE","JOANE","JI","JAYNA","JANELLA","JA","HUE","HERTHA","FRANCENE","ELINORE","DESPINA","DELSIE","DEEDRA","CLEMENCIA",
"CARRY","CAROLIN","CARLOS","BULAH","BRITTANIE","BOK","BLONDELL","BIBI","BEAULAH","BEATA","ANNITA","AGRIPINA","VIRGEN","VALENE",
"UN","TWANDA","TOMMYE","TOI","TARRA","TARI","TAMMERA","SHAKIA","SADYE","RUTHANNE","ROCHEL","RIVKA","PURA","NENITA","NATISHA",
"MING","MERRILEE","MELODEE","MARVIS","LUCILLA","LEENA","LAVETA","LARITA","LANIE","KEREN","ILEEN","GEORGEANN","GENNA","GENESIS",
"FRIDA","EWA","EUFEMIA","EMELY","ELA","EDYTH","DEONNA","DEADRA","DARLENA","CHANELL","CHAN","CATHERN","CASSONDRA","CASSAUNDRA",
"BERNARDA","BERNA","ARLINDA","ANAMARIA","ALBERT","WESLEY","VERTIE","VALERI","TORRI","TATYANA","STASIA","SHERISE","SHERILL",
"SEASON","SCOTTIE","SANDA","RUTHE","ROSY","ROBERTO","ROBBI","RANEE","QUYEN","PEARLY","PALMIRA","ONITA","NISHA","NIESHA","NIDA",
"NEVADA","NAM","MERLYN","MAYOLA","MARYLOUISE","MARYLAND","MARX","MARTH","MARGENE","MADELAINE","LONDA","LEONTINE","LEOMA","LEIA",
"LAWRENCE","LAURALEE","LANORA","LAKITA","KIYOKO","KETURAH","KATELIN","KAREEN","JONIE","JOHNETTE","JENEE","JEANETT","IZETTA",
"HIEDI","HEIKE","HASSIE","HAROLD","GIUSEPPINA","GEORGANN","FIDELA","FERNANDE","ELWANDA","ELLAMAE","ELIZ","DUSTI","DOTTY","CYNDY",
"CORALIE","CELESTA","ARGENTINA","ALVERTA","XENIA","WAVA","VANETTA","TORRIE","TASHINA","TANDY","TAMBRA","TAMA","STEPANIE","SHILA",
"SHAUNTA","SHARAN","SHANIQUA","SHAE","SETSUKO","SERAFINA","SANDEE","ROSAMARIA","PRISCILA","OLINDA","NADENE","MUOI","MICHELINA",
"MERCEDEZ","MARYROSE","MARIN","MARCENE","MAO","MAGALI","MAFALDA","LOGAN","LINN","LANNIE","KAYCE","KAROLINE","KAMILAH","KAMALA",
"JUSTA","JOLINE","JENNINE","JACQUETTA","IRAIDA","GERALD","GEORGEANNA","FRANCHESCA","FAIRY","EMELINE","ELANE","EHTEL","EARLIE",
"DULCIE","DALENE","CRIS","CLASSIE","CHERE","CHARIS","CAROYLN","CARMINA","CARITA","BRIAN","BETHANIE","AYAKO","ARICA","AN","ALYSA",
"ALESSANDRA","AKILAH","ADRIEN","ZETTA","YOULANDA","YELENA","YAHAIRA","XUAN","WENDOLYN","VICTOR","TIJUANA","TERRELL","TERINA",
"TERESIA","SUZI","SUNDAY","SHERELL","SHAVONDA","SHAUNTE","SHARDA","SHAKITA","SENA","RYANN","RUBI","RIVA","REGINIA","REA","RACHAL",
"PARTHENIA","PAMULA","MONNIE","MONET","MICHAELE","MELIA","MARINE","MALKA","MAISHA","LISANDRA","LEO","LEKISHA","LEAN","LAURENCE",
"LAKENDRA","KRYSTIN","KORTNEY","KIZZIE","KITTIE","KERA","KENDAL","KEMBERLY","KANISHA","JULENE","JULE","JOSHUA","JOHANNE","JEFFREY",
"JAMEE","HAN","HALLEY","GIDGET","GALINA","FREDRICKA","FLETA","FATIMAH","EUSEBIA","ELZA","ELEONORE","DORTHEY","DORIA","DONELLA",
"DINORAH","DELORSE","CLARETHA","CHRISTINIA","CHARLYN","BONG","BELKIS","AZZIE","ANDERA","AIKO","ADENA","YER","YAJAIRA","WAN",
"VANIA","ULRIKE","TOSHIA","TIFANY","STEFANY","SHIZUE","SHENIKA","SHAWANNA","SHAROLYN","SHARILYN","SHAQUANA","SHANTAY","SEE",
"ROZANNE","ROSELEE","RICKIE","REMONA","REANNA","RAELENE","QUINN","PHUNG","PETRONILA","NATACHA","NANCEY","MYRL","MIYOKO","MIESHA",
"MERIDETH","MARVELLA","MARQUITTA","MARHTA","MARCHELLE","LIZETH","LIBBIE","LAHOMA","LADAWN","KINA","KATHELEEN","KATHARYN","KARISA",
"KALEIGH","JUNIE","JULIEANN","JOHNSIE","JANEAN","JAIMEE","JACKQUELINE","HISAKO","HERMA","HELAINE","GWYNETH","GLENN","GITA",
"EUSTOLIA","EMELINA","ELIN","EDRIS","DONNETTE","DONNETTA","DIERDRE","DENAE","DARCEL","CLAUDE","CLARISA","CINDERELLA","CHIA",
"CHARLESETTA","CHARITA","CELSA","CASSY","CASSI","CARLEE","BRUNA","BRITTANEY","BRANDE","BILLI","BAO","ANTONETTA","ANGLA","ANGELYN",
"ANALISA","ALANE","WENONA","WENDIE","VERONIQUE","VANNESA","TOBIE","TEMPIE","SUMIKO","SULEMA","SPARKLE","SOMER","SHEBA","SHAYNE",
"SHARICE","SHANEL","SHALON","SAGE","ROY","ROSIO","ROSELIA","RENAY","REMA","REENA","PORSCHE","PING","PEG","OZIE","ORETHA","ORALEE",
"ODA","NU","NGAN","NAKESHA","MILLY","MARYBELLE","MARLIN","MARIS","MARGRETT","MARAGARET","MANIE","LURLENE","LILLIA","LIESELOTTE",
"LAVELLE","LASHAUNDA","LAKEESHA","KEITH","KAYCEE","KALYN","JOYA","JOETTE","JENAE","JANIECE","ILLA","GRISEL","GLAYDS","GENEVIE",
"GALA","FREDDA","FRED","ELMER","ELEONOR","DEBERA","DEANDREA","DAN","CORRINNE","CORDIA","CONTESSA","COLENE","CLEOTILDE","CHARLOTT",
"CHANTAY","CECILLE","BEATRIS","AZALEE","ARLEAN","ARDATH","ANJELICA","ANJA","ALFREDIA","ALEISHA","ADAM","ZADA","YUONNE","XIAO",
"WILLODEAN","WHITLEY","VENNIE","VANNA","TYISHA","TOVA","TORIE","TONISHA","TILDA","TIEN","TEMPLE","SIRENA","SHERRIL","SHANTI",
"SHAN","SENAIDA","SAMELLA","ROBBYN","RENDA","REITA","PHEBE","PAULITA","NOBUKO","NGUYET","NEOMI","MOON","MIKAELA","MELANIA",
"MAXIMINA","MARG","MAISIE","LYNNA","LILLI","LAYNE","LASHAUN","LAKENYA","LAEL","KIRSTIE","KATHLINE","KASHA","KARLYN","KARIMA",
"JOVAN","JOSEFINE","JENNELL","JACQUI","JACKELYN","HYO","HIEN","GRAZYNA","FLORRIE","FLORIA","ELEONORA","DWANA","DORLA","DONG",
"DELMY","DEJA","DEDE","DANN","CRYSTA","CLELIA","CLARIS","CLARENCE","CHIEKO","CHERLYN","CHERELLE","CHARMAIN","CHARA","CAMMY","BEE",
"ARNETTE","ARDELLE","ANNIKA","AMIEE","AMEE","ALLENA","YVONE","YUKI","YOSHIE","YEVETTE","YAEL","WILLETTA","VONCILE","VENETTA",
"TULA","TONETTE","TIMIKA","TEMIKA","TELMA","TEISHA","TAREN","TA","STACEE","SHIN","SHAWNTA","SATURNINA","RICARDA","POK","PASTY",
"ONIE","NUBIA","MORA","MIKE","MARIELLE","MARIELLA","MARIANELA","MARDELL","MANY","LUANNA","LOISE","LISABETH","LINDSY","LILLIANA",
"LILLIAM","LELAH","LEIGHA","LEANORA","LANG","KRISTEEN","KHALILAH","KEELEY","KANDRA","JUNKO","JOAQUINA","JERLENE","JANI","JAMIKA",
"JAME","HSIU","HERMILA","GOLDEN","GENEVIVE","EVIA","EUGENA","EMMALINE","ELFREDA","ELENE","DONETTE","DELCIE","DEEANNA","DARCEY",
"CUC","CLARINDA","CIRA","CHAE","CELINDA","CATHERYN","CATHERIN","CASIMIRA","CARMELIA","CAMELLIA","BREANA","BOBETTE","BERNARDINA",
"BEBE","BASILIA","ARLYNE","AMAL","ALAYNA","ZONIA","ZENIA","YURIKO","YAEKO","WYNELL","WILLOW","WILLENA","VERNIA","TU","TRAVIS",
"TORA","TERRILYN","TERICA","TENESHA","TAWNA","TAJUANA","TAINA","STEPHNIE","SONA","SOL","SINA","SHONDRA","SHIZUKO","SHERLENE",
"SHERICE","SHARIKA","ROSSIE","ROSENA","RORY","RIMA","RIA","RHEBA","RENNA","PETER","NATALYA","NANCEE","MELODI","MEDA","MAXIMA",
"MATHA","MARKETTA","MARICRUZ","MARCELENE","MALVINA","LUBA","LOUETTA","LEIDA","LECIA","LAURAN","LASHAWNA","LAINE","KHADIJAH",
"KATERINE","KASI","KALLIE","JULIETTA","JESUSITA","JESTINE","JESSIA","JEREMY","JEFFIE","JANYCE","ISADORA","GEORGIANNE","FIDELIA",
"EVITA","EURA","EULAH","ESTEFANA","ELSY","ELIZABET","ELADIA","DODIE","DION","DIA","DENISSE","DELORAS","DELILA","DAYSI","DAKOTA",
"CURTIS","CRYSTLE","CONCHA","COLBY","CLARETTA","CHU","CHRISTIA","CHARLSIE","CHARLENA","CARYLON","BETTYANN","ASLEY","ASHLEA",
"AMIRA","AI","AGUEDA","AGNUS","YUETTE","VINITA","VICTORINA","TYNISHA","TREENA","TOCCARA","TISH","THOMASENA","TEGAN","SOILA",
"SHILOH","SHENNA","SHARMAINE","SHANTAE","SHANDI","SEPTEMBER","SARAN","SARAI","SANA","SAMUEL","SALLEY","ROSETTE","ROLANDE","REGINE",
"OTELIA","OSCAR","OLEVIA","NICHOLLE","NECOLE","NAIDA","MYRTA","MYESHA","MITSUE","MINTA","MERTIE","MARGY","MAHALIA","MADALENE",
"LOVE","LOURA","LOREAN","LEWIS","LESHA","LEONIDA","LENITA","LAVONE","LASHELL","LASHANDRA","LAMONICA","KIMBRA","KATHERINA","KARRY",
"KANESHA","JULIO","JONG","JENEVA","JAQUELYN","HWA","GILMA","GHISLAINE","GERTRUDIS","FRANSISCA","FERMINA","ETTIE","ETSUKO","ELLIS",
"ELLAN","ELIDIA","EDRA","DORETHEA","DOREATHA","DENYSE","DENNY","DEETTA","DAINE","CYRSTAL","CORRIN","CAYLA","CARLITA","CAMILA",
"BURMA","BULA","BUENA","BLAKE","BARABARA","AVRIL","AUSTIN","ALAINE","ZANA","WILHEMINA","WANETTA","VIRGIL","VI","VERONIKA","VERNON",
"VERLINE","VASILIKI","TONITA","TISA","TEOFILA","TAYNA","TAUNYA","TANDRA","TAKAKO","SUNNI","SUANNE","SIXTA","SHARELL","SEEMA",
"RUSSELL","ROSENDA","ROBENA","RAYMONDE","PEI","PAMILA","OZELL","NEIDA","NEELY","MISTIE","MICHA","MERISSA","MAURITA","MARYLN",
"MARYETTA","MARSHALL","MARCELL","MALENA","MAKEDA","MADDIE","LOVETTA","LOURIE","LORRINE","LORILEE","LESTER","LAURENA","LASHAY",
"LARRAINE","LAREE","LACRESHA","KRISTLE","KRISHNA","KEVA","KEIRA","KAROLE","JOIE","JINNY","JEANNETTA","JAMA","HEIDY","GILBERTE",
"GEMA","FAVIOLA","EVELYNN","ENDA","ELLI","ELLENA","DIVINA","DAGNY","COLLENE","CODI","CINDIE","CHASSIDY","CHASIDY","CATRICE",
"CATHERINA","CASSEY","CAROLL","CARLENA","CANDRA","CALISTA","BRYANNA","BRITTENY","BEULA","BARI","AUDRIE","AUDRIA","ARDELIA",
"ANNELLE","ANGILA","ALONA","ALLYN","DOUGLAS","ROGER","JONATHAN","RALPH","NICHOLAS","BENJAMIN","BRUCE","HARRY","WAYNE","STEVE",
"HOWARD","ERNEST","PHILLIP","TODD","CRAIG","ALAN","PHILIP","EARL","DANNY","BRYAN","STANLEY","LEONARD","NATHAN","MANUEL","RODNEY",
"MARVIN","VINCENT","JEFFERY","JEFF","CHAD","JACOB","ALFRED","BRADLEY","HERBERT","FREDERICK","EDWIN","DON","RICKY","RANDALL",
"BARRY","BERNARD","LEROY","MARCUS","THEODORE","CLIFFORD","MIGUEL","JIM","TOM","CALVIN","BILL","LLOYD","DEREK","WARREN","DARRELL",
"JEROME","FLOYD","ALVIN","TIM","GORDON","GREG","JORGE","DUSTIN","PEDRO","DERRICK","ZACHARY","HERMAN","GLEN","HECTOR","RICARDO",
"RICK","BRENT","RAMON","GILBERT","MARC","REGINALD","RUBEN","NATHANIEL","RAFAEL","EDGAR","MILTON","RAUL","BEN","CHESTER","DUANE",
"FRANKLIN","BRAD","RON","ROLAND","ARNOLD","HARVEY","JARED","ERIK","DARRYL","NEIL","JAVIER","FERNANDO","CLINTON","TED","MATHEW",
"TYRONE","DARREN","LANCE","KURT","ALLAN","NELSON","GUY","CLAYTON","HUGH","MAX","DWAYNE","DWIGHT","ARMANDO","FELIX","EVERETT",
"IAN","WALLACE","KEN","BOB","ALFREDO","ALBERTO","DAVE","IVAN","BYRON","ISAAC","MORRIS","CLIFTON","WILLARD","ROSS","ANDY",
"SALVADOR","KIRK","SERGIO","SETH","KENT","TERRANCE","EDUARDO","TERRENCE","ENRIQUE","WADE","STUART","FREDRICK","ARTURO","ALEJANDRO",
"NICK","LUTHER","WENDELL","JEREMIAH","JULIUS","OTIS","TREVOR","OLIVER","LUKE","HOMER","GERARD","DOUG","KENNY","HUBERT","LYLE",
"MATT","ALFONSO","ORLANDO","REX","CARLTON","ERNESTO","NEAL","PABLO","LORENZO","OMAR","WILBUR","GRANT","HORACE","RODERICK",
"ABRAHAM","WILLIS","RICKEY","ANDRES","CESAR","JOHNATHAN","MALCOLM","RUDOLPH","DAMON","KELVIN","PRESTON","ALTON","ARCHIE","MARCO",
"WM","PETE","RANDOLPH","GARRY","GEOFFREY","JONATHON","FELIPE","GERARDO","ED","DOMINIC","DELBERT","COLIN","GUILLERMO","EARNEST",
"LUCAS","BENNY","SPENCER","RODOLFO","MYRON","EDMUND","GARRETT","SALVATORE","CEDRIC","LOWELL","GREGG","SHERMAN","WILSON",
"SYLVESTER","ROOSEVELT","ISRAEL","JERMAINE","FORREST","WILBERT","LELAND","SIMON","CLARK","IRVING","BRYANT","OWEN","RUFUS",
"WOODROW","KRISTOPHER","MACK","LEVI","MARCOS","GUSTAVO","JAKE","LIONEL","GILBERTO","CLINT","NICOLAS","ISMAEL","ORVILLE","ERVIN",
"DEWEY","AL","WILFRED","JOSH","HUGO","IGNACIO","CALEB","TOMAS","SHELDON","ERICK","STEWART","DOYLE","DARREL","ROGELIO","TERENCE",
"SANTIAGO","ALONZO","ELIAS","BERT","ELBERT","RAMIRO","CONRAD","NOAH","GRADY","PHIL","CORNELIUS","LAMAR","ROLANDO","CLAY","PERCY",
"DEXTER","BRADFORD","DARIN","AMOS","MOSES","IRVIN","SAUL","ROMAN","RANDAL","TIMMY","DARRIN","WINSTON","BRENDAN","ABEL","DOMINICK",
"BOYD","EMILIO","ELIJAH","DOMINGO","EMMETT","MARLON","EMANUEL","JERALD","EDMOND","EMIL","DEWAYNE","WILL","OTTO","TEDDY",
"REYNALDO","BRET","JESS","TRENT","HUMBERTO","EMMANUEL","STEPHAN","VICENTE","LAMONT","GARLAND","MILES","EFRAIN","HEATH","RODGER",
"HARLEY","ETHAN","ELDON","ROCKY","PIERRE","JUNIOR","FREDDY","ELI","BRYCE","ANTOINE","STERLING","CHASE","GROVER","ELTON",
"CLEVELAND","DYLAN","CHUCK","DAMIAN","REUBEN","STAN","AUGUST","LEONARDO","JASPER","RUSSEL","ERWIN","BENITO","HANS","MONTE",
"BLAINE","ERNIE","CURT","QUENTIN","AGUSTIN","MURRAY","JAMAL","ADOLFO","HARRISON","TYSON","BURTON","BRADY","ELLIOTT","WILFREDO",
"BART","JARROD","VANCE","DENIS","DAMIEN","JOAQUIN","HARLAN","DESMOND","ELLIOT","DARWIN","GREGORIO","BUDDY","XAVIER","KERMIT",
"ROSCOE","ESTEBAN","ANTON","SOLOMON","SCOTTY","NORBERT","ELVIN","WILLIAMS","NOLAN","ROD","QUINTON","HAL","BRAIN","ROB","ELWOOD",
"KENDRICK","DARIUS","MOISES","FIDEL","THADDEUS","CLIFF","MARCEL","JACKSON","RAPHAEL","BRYON","ARMAND","ALVARO","JEFFRY","DANE",
"JOESPH","THURMAN","NED","RUSTY","MONTY","FABIAN","REGGIE","MASON","GRAHAM","ISAIAH","VAUGHN","GUS","LOYD","DIEGO","ADOLPH",
"NORRIS","MILLARD","ROCCO","GONZALO","DERICK","RODRIGO","WILEY","RIGOBERTO","ALPHONSO","TY","NOE","VERN","REED","JEFFERSON",
"ELVIS","BERNARDO","MAURICIO","HIRAM","DONOVAN","BASIL","RILEY","NICKOLAS","MAYNARD","SCOT","VINCE","QUINCY","EDDY","SEBASTIAN",
"FEDERICO","ULYSSES","HERIBERTO","DONNELL","COLE","DAVIS","GAVIN","EMERY","WARD","ROMEO","JAYSON","DANTE","CLEMENT","COY",
"MAXWELL","JARVIS","BRUNO","ISSAC","DUDLEY","BROCK","SANFORD","CARMELO","BARNEY","NESTOR","STEFAN","DONNY","ART","LINWOOD","BEAU",
"WELDON","GALEN","ISIDRO","TRUMAN","DELMAR","JOHNATHON","SILAS","FREDERIC","DICK","IRWIN","MERLIN","CHARLEY","MARCELINO","HARRIS",
"CARLO","TRENTON","KURTIS","HUNTER","AURELIO","WINFRED","VITO","COLLIN","DENVER","CARTER","LEONEL","EMORY","PASQUALE","MOHAMMAD",
"MARIANO","DANIAL","LANDON","DIRK","BRANDEN","ADAN","BUFORD","GERMAN","WILMER","EMERSON","ZACHERY","FLETCHER","JACQUES","ERROL",
"DALTON","MONROE","JOSUE","EDWARDO","BOOKER","WILFORD","SONNY","SHELTON","CARSON","THERON","RAYMUNDO","DAREN","HOUSTON","ROBBY",
"LINCOLN","GENARO","BENNETT","OCTAVIO","CORNELL","HUNG","ARRON","ANTONY","HERSCHEL","GIOVANNI","GARTH","CYRUS","CYRIL","RONNY",
"LON","FREEMAN","DUNCAN","KENNITH","CARMINE","ERICH","CHADWICK","WILBURN","RUSS","REID","MYLES","ANDERSON","MORTON","JONAS",
"FOREST","MITCHEL","MERVIN","ZANE","RICH","JAMEL","LAZARO","ALPHONSE","RANDELL","MAJOR","JARRETT","BROOKS","ABDUL","LUCIANO",
"SEYMOUR","EUGENIO","MOHAMMED","VALENTIN","CHANCE","ARNULFO","LUCIEN","FERDINAND","THAD","EZRA","ALDO","RUBIN","ROYAL","MITCH",
"EARLE","ABE","WYATT","MARQUIS","LANNY","KAREEM","JAMAR","BORIS","ISIAH","EMILE","ELMO","ARON","LEOPOLDO","EVERETTE","JOSEF",
"ELOY","RODRICK","REINALDO","LUCIO","JERROD","WESTON","HERSHEL","BARTON","PARKER","LEMUEL","BURT","JULES","GIL","ELISEO","AHMAD",
"NIGEL","EFREN","ANTWAN","ALDEN","MARGARITO","COLEMAN","DINO","OSVALDO","LES","DEANDRE","NORMAND","KIETH","TREY","NORBERTO",
"NAPOLEON","JEROLD","FRITZ","ROSENDO","MILFORD","CHRISTOPER","ALFONZO","LYMAN","JOSIAH","BRANT","WILTON","RICO","JAMAAL","DEWITT",
"BRENTON","OLIN","FOSTER","FAUSTINO","CLAUDIO","JUDSON","GINO","EDGARDO","ALEC","TANNER","JARRED","DONN","TAD","PRINCE","PORFIRIO",
"ODIS","LENARD","CHAUNCEY","TOD","MEL","MARCELO","KORY","AUGUSTUS","KEVEN","HILARIO","BUD","SAL","ORVAL","MAURO","ZACHARIAH",
"OLEN","ANIBAL","MILO","JED","DILLON","AMADO","NEWTON","LENNY","RICHIE","HORACIO","BRICE","MOHAMED","DELMER","DARIO","REYES","MAC",
"JONAH","JERROLD","ROBT","HANK","RUPERT","ROLLAND","KENTON","DAMION","ANTONE","WALDO","FREDRIC","BRADLY","KIP","BURL","WALKER",
"TYREE","JEFFEREY","AHMED","WILLY","STANFORD","OREN","NOBLE","MOSHE","MIKEL","ENOCH","BRENDON","QUINTIN","JAMISON","FLORENCIO",
"DARRICK","TOBIAS","HASSAN","GIUSEPPE","DEMARCUS","CLETUS","TYRELL","LYNDON","KEENAN","WERNER","GERALDO","COLUMBUS","CHET",
"BERTRAM","MARKUS","HUEY","HILTON","DWAIN","DONTE","TYRON","OMER","ISAIAS","HIPOLITO","FERMIN","ADALBERTO","BO","BARRETT",
"TEODORO","MCKINLEY","MAXIMO","GARFIELD","RALEIGH","LAWERENCE","ABRAM","RASHAD","KING","EMMITT","DARON","SAMUAL","MIQUEL",
"EUSEBIO","DOMENIC","DARRON","BUSTER","WILBER","RENATO","JC","HOYT","HAYWOOD","EZEKIEL","CHAS","FLORENTINO","ELROY","CLEMENTE",
"ARDEN","NEVILLE","EDISON","DESHAWN","NATHANIAL","JORDON","DANILO","CLAUD","SHERWOOD","RAYMON","RAYFORD","CRISTOBAL","AMBROSE",
"TITUS","HYMAN","FELTON","EZEQUIEL","ERASMO","STANTON","LONNY","LEN","IKE","MILAN","LINO","JAROD","HERB","ANDREAS","WALTON",
"RHETT","PALMER","DOUGLASS","CORDELL","OSWALDO","ELLSWORTH","VIRGILIO","TONEY","NATHANAEL","DEL","BENEDICT","MOSE","JOHNSON",
"ISREAL","GARRET","FAUSTO","ASA","ARLEN","ZACK","WARNER","MODESTO","FRANCESCO","MANUAL","GAYLORD","GASTON","FILIBERTO","DEANGELO",
"MICHALE","GRANVILLE","WES","MALIK","ZACKARY","TUAN","ELDRIDGE","CRISTOPHER","CORTEZ","ANTIONE","MALCOM","LONG","KOREY","JOSPEH",
"COLTON","WAYLON","VON","HOSEA","SHAD","SANTO","RUDOLF","ROLF","REY","RENALDO","MARCELLUS","LUCIUS","KRISTOFER","BOYCE","BENTON",
"HAYDEN","HARLAND","ARNOLDO","RUEBEN","LEANDRO","KRAIG","JERRELL","JEROMY","HOBERT","CEDRICK","ARLIE","WINFORD","WALLY","LUIGI",
"KENETH","JACINTO","GRAIG","FRANKLYN","EDMUNDO","SID","PORTER","LEIF","JERAMY","BUCK","WILLIAN","VINCENZO","SHON","LYNWOOD","JERE",
"HAI","ELDEN","DORSEY","DARELL","BRODERICK","ALONSO"};
--Setup the variables
timer = Stopwatch:create();
sums = {} --Holds the score based on the sum of the characters in the name
prod = {} --Holds the score based on the sum of the characters and the location in alphabetical order
--Start the timer
timer:start();
--Sort all the names
table.sort(NAMES);
--Step through every name adding up the values of the characters
for nameCnt = 1, #NAMES do
--Step through every character in the current name adding up the value
sums[nameCnt] = 0;
for charCnt = 1, string.len(NAMES[nameCnt]) do
--A = 65 so subtracting 64 means A - 1. This will only work correctly if all letters are capitalized
sums[nameCnt] = sums[nameCnt] + utf8.codepoint(string.sub(NAMES[nameCnt], charCnt, charCnt)) - 64;
end
end
--Get the product for all numbers
for cnt = 1, #sums do
prod[cnt] = sums[cnt] * cnt;
end
--Stop the timer
timer:stop();
--Print the results
io.write("The answer to the question is " .. getSum(prod) .. '\n');
io.write("It tooks " .. timer:getMilliseconds() .. " milliseconds to run this algorithm\n");
--[[ Results:
The answer to the question is 871198282
It tooks 0.0 milliseconds to run this algorithm
]]

91
Problem23.lua Normal file
View File

@@ -0,0 +1,91 @@
--ProjectEuler/lua/Problem23.lua
--Matthew Ellison
-- Created: 03-22-19
--Modified: 03-28-19
--Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
MAX_NUM = 28123; --The highest number that will be evaluated
function isSum(abund, num)
local sumOfNums = 0;
--Pick a number for the first part of the sum
for firstNum = 1, #abund do
for secondNum = firstNum, #abund do
sumOfNums = abund[firstNum] + abund[secondNum];
if(sumOfNums == num) then
return true;
elseif(sumOfNums > num) then
break;
end
end
end
return false;
end
--Setup the variables
local timer = Stopwatch:create();
local divisorSums = {};
--Start the timer
timer:start();
--Get the sum of the divisors of all numbers < MAX_NUM
for cnt = 1, MAX_NUM do
local div = getDivisors(cnt);
if(#div > 1) then
table.remove(div, #div);
end
divisorSums[cnt] = getSum(div);
end
--Get the abundant numbers
local abund = {};
for cnt = 1, #divisorSums do
if(divisorSums[cnt] > cnt) then
abund[#abund + 1] = cnt;
end
end
--Check if each number can be the sum of 2 abundant numbers and add to the sum if no
local sumOfNums = 0;
for cnt = 1, MAX_NUM do
if(not isSum(abund, cnt)) then
sumOfNums = sumOfNums + cnt;
end
end
--Stop the timer
timer:stop();
--Print the results
io.write("The answer is " .. sumOfNums .. '\n');
io.write("It took " .. timer:getSeconds() .. " seconds to run this algorithm\n");
--[[Results:
The answer is 4179871
It took 393.139 seconds to run this algorithm
]]

51
Problem24.lua Normal file
View File

@@ -0,0 +1,51 @@
--ProjectEuler/lua/Problem24.lua
--Matthew Ellison
-- Created: 03-24-19
--Modified: 03-28-19
--What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
NEEDED_PERM = 1000000; --The number of the permutation that you need
--Setup the variables
timer = Stopwatch:create();
nums = "0123456789";
--Start the timer
timer:start();
--Get all permutations of the string
permutations = getPermutations(nums);
--Stop the timer
timer:stop();
--Print the results
io.write("The 1 millionth permutation is " .. permutations[NEEDED_PERM] .. '\n');
io.write("It took " .. timer:getSeconds() .. " seconds to run this algorithm\n");
--[[ Results:
The 1 millionth permutation is 2783915460
It took 50.175 seconds to run this algorithm
]]

63
Problem25.lua Normal file
View File

@@ -0,0 +1,63 @@
--ProjectEuler/lua/Problem25.lua
--Matthew Ellison
-- Created: 03-26-19
--Modified: 03-28-19
--What is the index of the first term in the Fibonacci sequence to contain 1000 digits?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--I used the bigint library from https://github.com/empyreuma/bigint.lua
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch";
require "Algorithms";
local bigint = require "bigint";
NUM_DIGITS = 1000; --The number of digits to calculate up to
--Setup the variables
local timer = Stopwatch:create();
local number = bigint.new(0); --The current Fibonacci number
local index = 2; --The index of the jest calculated Fibonacci number
--Start the timer
timer:start();
--Move through all Fibonacci numbers until you reach the one with at least NUM_DIGITS digits
while(#bigint.unserialize(number, 's') < NUM_DIGITS) do
index = index + 1; --Increase the index number. Doing this at the beginning keeps the index correct at the end of the loop
print("index: " .. index);
--print("Size: " .. #bigint.unserialize(number, 's'));
--print("number: " .. bigint.unserialize(number, 's'));
number = getLargeFib(index); --Calculate the number
end
--Stop the timer
timer:stop();
--Print the results
io.write("The first Fibonacci number with " .. NUM_DIGITS .. " digits is " .. bigint.unserialize(number, 's') .. '\n');
io.write("The index is " .. index .. '\n');
io.write("It took " .. timer:getMinutes() .. " minutes to run this algorithm\n");
--[[ Results:
The first Fibonacci number with 1000 digits is 1070066266382758936764980584457396885083683896632151665013235203375314520604694040621889147582489792657804694888177591957484336466672569959512996030461262748092482186144069433051234774442750273781753087579391666192149259186759553966422837148943113074699503439547001985432609723067290192870526447243726117715821825548491120525013201478612965931381792235559657452039506137551467837543229119602129934048260706175397706847068202895486902666185435124521900369480641357447470911707619766945691070098024393439617474103736912503231365532164773697023167755051595173518460579954919410967778373229665796581646513903488154256310184224190259846088000110186255550245493937113651657039447629584714548523425950428582425306083544435428212611008992863795048006894330309773217834864543113205765659868456288616808718693835297350643986297640660000723562917905207051164077614812491885830945940566688339109350944456576357666151619317753792891661581327159616877487983821820492520348473874384736771934512787029218636250627816
The index is 4782
It took 182.529 minutes to run this algorithm
]]

86
Problem26.lua Normal file
View File

@@ -0,0 +1,86 @@
--ProjectEuler/lua/Problem26.lua
--Matthew Ellison
-- Created: 08-02-19
--Modified: 08-02-19
--Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
local TOP_NUMBER = 999 --The largest denominator to tbe checked
--Setup the variables
local timer = Stopwatch:create();
local longestCycle = 0;
local longestNumber = 1;
--Start the timer
timer:start();
--Start with 1/2 and find out how long the longest cycle is by checking the remainders
--Loop through every number from 2-999 and use it for the denominator
for denominator = 2, TOP_NUMBER do
local remainderList = {}; --Holds the list of remainders
local endFound = false; --Holds whether we have found an end to the number (either a cycle or a 0 for remainder)
local cycleFound = false; --Holds whether a cycle was detected
local numerator = 1; --The numerator that will be divided
while(not endFound) do
--Get the remainder after the division
local remainder = numerator % denominator
--Check if the remainder is 0
--If it is, set the flag
if(remainder == 0) then
endFound = true;
--Check if the remainder is in the list
--If it is in the list, set the appropriate flags
elseif(remainderList[remainder]) then
endFound = true;
cycleFound = true;
--Else add it to the list
else
remainderList[remainder] = true;
end
--Multiply the remainder by 10 to continue finding the next remainder
numerator = remainder * 10;
end
--If a cycle was found check the size of the list against the largest cycle
if(cycleFound) then
--If it is larger than the largest, set it as the new largest
if(#remainderList > longestCycle) then
longestCycle = #remainderList;
longestNumber = denominator;
end
end
end
--End the timer
timer:stop();
--Print the results
io.write("The longest cycle is " .. longestCycle .. " digits long\n");
io.write("It is started with the number " .. longestNumber .. '\n');
io.write("It took " .. timer:getString() .. " to run this algorithm\n");
--[[ Results:
The longest cycle is 982 digits long
It is started with the number 983
It took 28.222 milliseconds to run this algorithm
]]

77
Problem27.lua Normal file
View File

@@ -0,0 +1,77 @@
--ProjectEuler/lua/Problem27.lua
--Matthew Ellison
-- Created: 09-15-19
--Modified: 09-15-19
--Find the product of the coefficients, |a| < 1000 and |b| <= 1000, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
--Setup the variables
local timer = Stopwatch:create();
local topA = 0; --The A for the most n's generated
local topB = 0; --The B for the most n's generated
local topN = 0; --The most n's generated
local primes = getPrimes(12000) --A list of all primes that could possibly be generated with this formula
--Start the timer
timer:start();
--Start with the lowest possible A and check all possibilities after that
for a = -999, 999 do
--Start with the lowest possible B and check all possibilities after that
for b = -1000, 1000 do
--Start with n=0 and check the formula to see how many primes you can get get with concecutive n's
local n = 0;
local quadratic = (n * n) + (a * n) + b;
while(isFound(primes, quadratic)) do
n = n + 1;
quadratic = (n * n) + (a * n) + b;
end
n = n - 1; --Negate an n because the last formula failed
--Set all the largest numbers if this created more primes than any other
if(n > topN) then
topN = n;
topB = b;
topA = a;
end
end
end
--Stop the timer
timer:stop();
--Print the results
io.write("The greatest number of primes found is " .. topN .. '\n');
io.write("It was found with A = " .. topA .. ", B = " .. topB .. '\n');
io.write("The product of A and B is " .. topA * topB .. '\n');
io.write("It took " .. timer:getString() .. " to run this algorithm\n");
--[[ Results:
The greatest number of primes found is 70
It was found with A = -61, B = 971
The product of A and B is -59231
It took 119.350 seconds to run this algorithm
]]

114
Problem28.lua Normal file
View File

@@ -0,0 +1,114 @@
--ProjectEuler/lua/Problem28.lua
--Matthew Ellison
-- Created: 09-15-19
--Modified: 10-06-19
--Find the product of the coefficients, |a| < 1000 and |b| <= 1000, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
--Setup the variables
local timer = Stopwatch:create();
local grid = {};
local finalLocation = false; --A flag to indicate if the final location to be filled has been reached
local currentNum = 1; --Set the number that is going to be put at each location
--Make a 1001x1001 grid full of 0's
for row = 0, 1001 do
grid[row] = {};
for col = 0, 1001 do
grid[row][col] = 0;
end
end
--Start the timer
timer:start();
--Start with the middle location and set it correctly and advance the tracker to the next number
local xLocation = 500;
local yLocation = 500;
grid[yLocation][xLocation] = currentNum;
currentNum = currentNum + 1;
--Move right the first time
xLocation = xLocation + 1;
--Move in a circular pattern until you reach the final location
while(not finalLocation) do
--Move down until you reach a blank location on the left
while(grid[yLocation][xLocation - 1] ~= 0) do
grid[yLocation][xLocation] = currentNum;
currentNum = currentNum + 1;
yLocation = yLocation + 1;
end
--Move left until you reach a blank location above
while(grid[yLocation - 1][xLocation] ~= 0) do
grid[yLocation][xLocation] = currentNum;
currentNum = currentNum + 1;
xLocation = xLocation - 1;
end
--Move up until you reach a blank location to the right
while(grid[yLocation][xLocation + 1] ~= 0) do
grid[yLocation][xLocation] = currentNum;
currentNum = currentNum + 1;
yLocation = yLocation - 1;
end
--Move right until you reach a blank location below
while(grid[yLocation + 1][xLocation] ~= 0) do
grid[yLocation][xLocation] = currentNum;
currentNum = currentNum + 1;
xLocation = xLocation + 1;
--Check if you are at the final location and break the loop if you are
if(xLocation == #grid) then
finalLocation = true;
break;
end
end
end
--Get the sum of the diagonals
local leftSide = 0;
local rightSide = #grid - 1;
local row = 0;
local sumOfDiag = 0;
while(row < #grid) do
--This ensures the middle location is only counted once
if(leftSide == rightSide) then
sumOfDiag = sumOfDiag + grid[row][leftSide];
else
sumOfDiag = sumOfDiag + grid[row][leftSide];
sumOfDiag = sumOfDiag + grid[row][rightSide];
end
row = row + 1;
leftSide = leftSide + 1;
rightSide = rightSide - 1;
end
--Stop the timer
timer:stop();
--Print the results
io.write("The sum of the diagonals in the given grid is " .. sumOfDiag .. '\n');
io.write("It took " .. timer:getString() .. " to run this algorithm\n");
--[[ Results:
The sum of the diagonals in the given grid is 669171001
It took 81.680 milliseconds to run this algorithm
]]

64
Problem29.lua Normal file
View File

@@ -0,0 +1,64 @@
--ProjectEuler/lua/Problem29.lua
-- Created: 10-10-19
--Modified: 10-10-19
--How many distinct terms are in the sequence generated by a^b for 2 <= a <= 100 and 2 <= b <= 100?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--I used the bigint library from https://github.com/empyreuma/bigint.lua
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
local bigint = require("bigint")
--Setup the variables
local timer = Stopwatch:create();
local BOTTOM_A = 2; --The lowest possible value for A
local TOP_A = 100; --The highest possible value for A
local BOTTOM_B = 2; --The lowest possible value for B
local TOP_B = 100; --The highest possible value for B
local unique = {}; --A table to hold all of the unique answers for the equation
local currentNum = bigint.new(); --Holds the answer to the equation for a particular loop
--Start the timer
timer:start();
--Start with the lowest A and move towards the largest
for currentA = BOTTOM_A, TOP_A do
--Start with the lowest B and move towards the largest
for currentB = BOTTOM_B, TOP_B do
--Get the new number
currentNum = bigint.unserialize(bigint.exponentiate(bigint.new(currentA), bigint.new(currentB)), "s");
--If the number isn't in the list add it
if(not isFound(unique, currentNum)) then
table.insert(unique, currentNum);
end
end
end
--Stop the timer
timer:stop();
--Print the results
io.write("The number of unique values generated by a^b for " .. BOTTOM_A .. " <= a <= " .. TOP_A .. " and " .. BOTTOM_B .. " <= b <= " .. TOP_B .. " is " .. #unique .. '\n');
io.write("It took " .. timer:getString() .. " to run this algorithm\n");
--[[ Results:
The number of unique values generated by a^b for 2 <= a <= 100 and 2 <= b <= 100 is 9183
It took 2.714 minutes to run this algorithm
]]

46
Problem3.lua Normal file
View File

@@ -0,0 +1,46 @@
--ProjectEuler/lua/Problem3.lua
--Matthew Ellison
-- Created: 02-04-19
--Modified: 03-28-19
--The largest prime factor of 600851475143
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
timer = Stopwatch:create();
timer:start();
TARGET_NUMBER = 600851475143;
--Get the factors of the number
factors = getFactors(TARGET_NUMBER);
timer:stop();
--The largest number will be the answer
--Print the results
print("The largest prime factor of " .. TARGET_NUMBER .. " is " .. factors[#factors]);
print("It took " .. timer:getSeconds() .. " seconds to run this algorithm");
--[[Results:
The largest prime factor of 600851475143 is 6857
It took 1.612 seconds to run this algorithm
]]

89
Problem30.lua Normal file
View File

@@ -0,0 +1,89 @@
--ProjectEuler/lua/Problem29.lua
-- Created: 10-28-19
--Modified: 10-28-19
--Find the sum of all the numbers that can be written as the sum of the fifth powers of their digits.
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
--Returns a table with the individual digits of the number passed to it
function getDigits(num)
local listOfDigits = {}; --This table holds the individual digits of num
--The easiest way to get the individual digits of a number is by converting it to a string
local digits = tostring(num);
--Start with the first digit, convert it to an integer, store it in the table, and move to the next digit
for cnt = 1, #digits do
table.insert(listOfDigits, tonumber(string.sub(digits, cnt, cnt)));
end
--Return the table of digits
return listOfDigits;
end
--Gets the sum of a table of numbers
function getSumOfTable(ary)
local sum = 0; --Start the sum at 0 so you can add to it
--Add every number in the table to the sum
for cnt = 1, #ary do
sum = sum + ary[cnt];
end
--Return the sum
return sum;
end
--Setup the variables
local timer = Stopwatch:create();
local TOP_NUM = 1000000; --This is the largest number that will be checked
local BOTTOM_NUM = 2; --Starts with 2 because 0 and 1 don't count
local POWER_RAISED = 5; --This is the power that the digits are raised to
local sumOfFifthNumbers = {}; --This is a table of the numbers that are the sum of the fifth power of their digits
--Start the timer
timer:start();
--Start with the lowest number and increment until you reach the largest number
for currentNum = BOTTOM_NUM, TOP_NUM do
--Get the digits of the number
local digits = getDigits(currentNum);
--Get the sum of the powers
local sumOfPowers = 0;
for cnt = 1, #digits do
sumOfPowers = sumOfPowers + math.pow(digits[cnt], POWER_RAISED);
end
--Check if the sum of the powers is the same as the number
--If it is add it to the list, otherwise continue to the next number
if(sumOfPowers == currentNum) then
table.insert(sumOfFifthNumbers, currentNum);
end
end
--Stop the timer
timer:stop();
--Print the results
io.write("The sum of all the numbers that can be written as the sum of the fifth powers of their digits is " .. getSumOfTable(sumOfFifthNumbers) .. '\n');
io.write("It took " .. timer:getString() .. " to run this algorithm\n");
--[[ Results:
The sum of all the numbers that can be written as the sum of the fifth powers of their digits is 443839
It took 2.706 seconds to run this algorithm
]]

56
Problem4.lua Normal file
View File

@@ -0,0 +1,56 @@
--ProjectEuler/lua/Problem4.lua
--Matthew Ellison
-- Created: 02-05-19
--Modified: 03-28-19
--Find the largest palindrome made from the product of two 3-digit numbers
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
palindromes = {}; --Holds all palindromes the program finds
--Loop through every number 100-999 twice, nested, so you can multiply every number by every other number in the array
for num1=100,999 do
for num2=num1,999 do
currentNum = num1 * num2;
--If the number is a palindrome add it to the list of palindromes, otherwise ignore it
--Using strings makes it easier to determine a palindrome
if(tostring(currentNum) == string.reverse(tostring(currentNum))) then
palindromes[#palindromes+1] = currentNum;
end
end
end
--Sort the list for neatness
table.sort(palindromes);
timer:stop();
--Print the results
print("The largest palindrome made from the product of two 3-digit numbers is " .. palindromes[#palindromes]);
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results:
The largest palindrome made from the product of two 3-digit numbers is 906609
It took 268.412 milliseconds to run this algorithm
]]

66
Problem5.lua Normal file
View File

@@ -0,0 +1,66 @@
--ProjectEuler/lua/Problem5.lua
--Matthew Ellison
-- Created: 02-05-19
--Modified: 03-28-19
--What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
--Setup the variables you need
numFound = false;
currentNum = 22; --Start looking at 22 becuase it must be divisible by 2 and greater than 20
--Start a loop looking for the correct number
while((not numFound) and (currentNum > 0)) do
--Set that you found the number to true because you set this flag when you don't find it
numFound = true;
--See if the current number is divisible by all number from 1 to 20
for divisor=1,20 do
--If it is not set a flag to move to the next possible number
if((currentNum % divisor) ~= 0) then
numFound = false;
break;
end
end
--Increment the number by 2 to check the next one if you didn't find the number
if(not numFound) then
currentNum = currentNum + 2
end
end
timer:stop();
--Print the results
if(currentNum < 0) then
print("There was an error: Could not find a number that fit the criteria");
else
print("The smallest positive number that is evenly divisible by all numbers 1-20 is " .. currentNum);
print("It took " .. timer:getSeconds() .. " seconds to run this algorithm")
end
--[[Results:
The smallest positive number that is evenly divisible by all numbers 1-20 is 232792560
It took 24.788324 seconds to run this algorithm
]]

51
Problem6.lua Normal file
View File

@@ -0,0 +1,51 @@
--ProjectEuler/lua/Problem6.lua
--Matthew Ellison
-- Created: 02-06-19
--Modified: 03-28-19
--Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
--Create the variables you need
sumOfSquares = 0;
squareOfSum = 0;
--Loop through all numbers 1-100 to do the appropriate math with them
for num=1,100 do
sumOfSquares = sumOfSquares + num^2; --Get the sum of the squares of the first 100 natural number
squareOfSum = squareOfSum + num; --Get the sum of the first 100 natural numbers
end
--Square the normal sum
squareOfSum = squareOfSum^2;
timer:stop();
--Print the result
print("The difference between the sum of the squares and the square of the sum of the numbers 1-100 is " .. math.floor(math.abs(sumOfSquares - squareOfSum)));
print("It took " .. timer:getMicroseconds() .. " microseconds to run this algorithm");
--[[Results:
The difference between the sum of the squares and the square of the sum of the numbers 1-100 is 25164150
It took 53 microseconds to run this algorithm
]]

331
Problem67.lua Normal file
View File

@@ -0,0 +1,331 @@
--ProjectEuler/lua/Problem67.lua
--Matthew Ellison
-- Created: 03-26-19
--Modified: 03-28-19
--Find the maximum total from top to bottom
--[[
59
73 41
52 40 09
26 53 06 34
10 51 87 86 81
61 95 66 57 25 68
90 81 80 38 92 67 73
30 28 51 76 81 18 75 44
84 14 95 87 62 81 17 78 58
21 46 71 58 02 79 62 39 31 09
56 34 35 53 78 31 81 18 90 93 15
78 53 04 21 84 93 32 13 97 11 37 51
45 03 81 79 05 18 78 86 13 30 63 99 95
39 87 96 28 03 38 42 17 82 87 58 07 22 57
06 17 51 17 07 93 09 07 75 97 95 78 87 08 53
67 66 59 60 88 99 94 65 55 77 55 34 27 53 78 28
76 40 41 04 87 16 09 42 75 69 23 97 30 60 10 79 87
12 10 44 26 21 36 32 84 98 60 13 12 36 16 63 31 91 35
70 39 06 05 55 27 38 48 28 22 34 35 62 62 15 14 94 89 86
66 56 68 84 96 21 34 34 34 81 62 40 65 54 62 05 98 03 02 60
38 89 46 37 99 54 34 53 36 14 70 26 02 90 45 13 31 61 83 73 47
36 10 63 96 60 49 41 05 37 42 14 58 84 93 96 17 09 43 05 43 06 59
66 57 87 57 61 28 37 51 84 73 79 15 39 95 88 87 43 39 11 86 77 74 18
54 42 05 79 30 49 99 73 46 37 50 02 45 09 54 52 27 95 27 65 19 45 26 45
71 39 17 78 76 29 52 90 18 99 78 19 35 62 71 19 23 65 93 85 49 33 75 09 02
33 24 47 61 60 55 32 88 57 55 91 54 46 57 07 77 98 52 80 99 24 25 46 78 79 05
92 09 13 55 10 67 26 78 76 82 63 49 51 31 24 68 05 57 07 54 69 21 67 43 17 63 12
24 59 06 08 98 74 66 26 61 60 13 03 09 09 24 30 71 08 88 70 72 70 29 90 11 82 41 34
66 82 67 04 36 60 92 77 91 85 62 49 59 61 30 90 29 94 26 41 89 04 53 22 83 41 09 74 90
48 28 26 37 28 52 77 26 51 32 18 98 79 36 62 13 17 08 19 54 89 29 73 68 42 14 08 16 70 37
37 60 69 70 72 71 09 59 13 60 38 13 57 36 09 30 43 89 30 39 15 02 44 73 05 73 26 63 56 86 12
55 55 85 50 62 99 84 77 28 85 03 21 27 22 19 26 82 69 54 04 13 07 85 14 01 15 70 59 89 95 10 19
04 09 31 92 91 38 92 86 98 75 21 05 64 42 62 84 36 20 73 42 21 23 22 51 51 79 25 45 85 53 03 43 22
75 63 02 49 14 12 89 14 60 78 92 16 44 82 38 30 72 11 46 52 90 27 08 65 78 03 85 41 57 79 39 52 33 48
78 27 56 56 39 13 19 43 86 72 58 95 39 07 04 34 21 98 39 15 39 84 89 69 84 46 37 57 59 35 59 50 26 15 93
42 89 36 27 78 91 24 11 17 41 05 94 07 69 51 96 03 96 47 90 90 45 91 20 50 56 10 32 36 49 04 53 85 92 25 65
52 09 61 30 61 97 66 21 96 92 98 90 06 34 96 60 32 69 68 33 75 84 18 31 71 50 84 63 03 03 19 11 28 42 75 45 45
61 31 61 68 96 34 49 39 05 71 76 59 62 67 06 47 96 99 34 21 32 47 52 07 71 60 42 72 94 56 82 83 84 40 94 87 82 46
01 20 60 14 17 38 26 78 66 81 45 95 18 51 98 81 48 16 53 88 37 52 69 95 72 93 22 34 98 20 54 27 73 61 56 63 60 34 63
93 42 94 83 47 61 27 51 79 79 45 01 44 73 31 70 83 42 88 25 53 51 30 15 65 94 80 44 61 84 12 77 02 62 02 65 94 42 14 94
32 73 09 67 68 29 74 98 10 19 85 48 38 31 85 67 53 93 93 77 47 67 39 72 94 53 18 43 77 40 78 32 29 59 24 06 02 83 50 60 66
32 01 44 30 16 51 15 81 98 15 10 62 86 79 50 62 45 60 70 38 31 85 65 61 64 06 69 84 14 22 56 43 09 48 66 69 83 91 60 40 36 61
92 48 22 99 15 95 64 43 01 16 94 02 99 19 17 69 11 58 97 56 89 31 77 45 67 96 12 73 08 20 36 47 81 44 50 64 68 85 40 81 85 52 09
91 35 92 45 32 84 62 15 19 64 21 66 06 01 52 80 62 59 12 25 88 28 91 50 40 16 22 99 92 79 87 51 21 77 74 77 07 42 38 42 74 83 02 05
46 19 77 66 24 18 05 32 02 84 31 99 92 58 96 72 91 36 62 99 55 29 53 42 12 37 26 58 89 50 66 19 82 75 12 48 24 87 91 85 02 07 03 76 86
99 98 84 93 07 17 33 61 92 20 66 60 24 66 40 30 67 05 37 29 24 96 03 27 70 62 13 04 45 47 59 88 43 20 66 15 46 92 30 04 71 66 78 70 53 99
67 60 38 06 88 04 17 72 10 99 71 07 42 25 54 05 26 64 91 50 45 71 06 30 67 48 69 82 08 56 80 67 18 46 66 63 01 20 08 80 47 07 91 16 03 79 87
18 54 78 49 80 48 77 40 68 23 60 88 58 80 33 57 11 69 55 53 64 02 94 49 60 92 16 35 81 21 82 96 25 24 96 18 02 05 49 03 50 77 06 32 84 27 18 38
68 01 50 04 03 21 42 94 53 24 89 05 92 26 52 36 68 11 85 01 04 42 02 45 15 06 50 04 53 73 25 74 81 88 98 21 67 84 79 97 99 20 95 04 40 46 02 58 87
94 10 02 78 88 52 21 03 88 60 06 53 49 71 20 91 12 65 07 49 21 22 11 41 58 99 36 16 09 48 17 24 52 36 23 15 72 16 84 56 02 99 43 76 81 71 29 39 49 17
64 39 59 84 86 16 17 66 03 09 43 06 64 18 63 29 68 06 23 07 87 14 26 35 17 12 98 41 53 64 78 18 98 27 28 84 80 67 75 62 10 11 76 90 54 10 05 54 41 39 66
43 83 18 37 32 31 52 29 95 47 08 76 35 11 04 53 35 43 34 10 52 57 12 36 20 39 40 55 78 44 07 31 38 26 08 15 56 88 86 01 52 62 10 24 32 05 60 65 53 28 57 99
03 50 03 52 07 73 49 92 66 80 01 46 08 67 25 36 73 93 07 42 25 53 13 96 76 83 87 90 54 89 78 22 78 91 73 51 69 09 79 94 83 53 09 40 69 62 10 79 49 47 03 81 30
71 54 73 33 51 76 59 54 79 37 56 45 84 17 62 21 98 69 41 95 65 24 39 37 62 03 24 48 54 64 46 82 71 78 33 67 09 16 96 68 52 74 79 68 32 21 13 78 96 60 09 69 20 36
73 26 21 44 46 38 17 83 65 98 07 23 52 46 61 97 33 13 60 31 70 15 36 77 31 58 56 93 75 68 21 36 69 53 90 75 25 82 39 50 65 94 29 30 11 33 11 13 96 02 56 47 07 49 02
76 46 73 30 10 20 60 70 14 56 34 26 37 39 48 24 55 76 84 91 39 86 95 61 50 14 53 93 64 67 37 31 10 84 42 70 48 20 10 72 60 61 84 79 69 65 99 73 89 25 85 48 92 56 97 16
03 14 80 27 22 30 44 27 67 75 79 32 51 54 81 29 65 14 19 04 13 82 04 91 43 40 12 52 29 99 07 76 60 25 01 07 61 71 37 92 40 47 99 66 57 01 43 44 22 40 53 53 09 69 26 81 07
49 80 56 90 93 87 47 13 75 28 87 23 72 79 32 18 27 20 28 10 37 59 21 18 70 04 79 96 03 31 45 71 81 06 14 18 17 05 31 50 92 79 23 47 09 39 47 91 43 54 69 47 42 95 62 46 32 85
37 18 62 85 87 28 64 05 77 51 47 26 30 65 05 70 65 75 59 80 42 52 25 20 44 10 92 17 71 95 52 14 77 13 24 55 11 65 26 91 01 30 63 15 49 48 41 17 67 47 03 68 20 90 98 32 04 40 68
90 51 58 60 06 55 23 68 05 19 76 94 82 36 96 43 38 90 87 28 33 83 05 17 70 83 96 93 06 04 78 47 80 06 23 84 75 23 87 72 99 14 50 98 92 38 90 64 61 58 76 94 36 66 87 80 51 35 61 38
57 95 64 06 53 36 82 51 40 33 47 14 07 98 78 65 39 58 53 06 50 53 04 69 40 68 36 69 75 78 75 60 03 32 39 24 74 47 26 90 13 40 44 71 90 76 51 24 36 50 25 45 70 80 61 80 61 43 90 64 11
18 29 86 56 68 42 79 10 42 44 30 12 96 18 23 18 52 59 02 99 67 46 60 86 43 38 55 17 44 93 42 21 55 14 47 34 55 16 49 24 23 29 96 51 55 10 46 53 27 92 27 46 63 57 30 65 43 27 21 20 24 83
81 72 93 19 69 52 48 01 13 83 92 69 20 48 69 59 20 62 05 42 28 89 90 99 32 72 84 17 08 87 36 03 60 31 36 36 81 26 97 36 48 54 56 56 27 16 91 08 23 11 87 99 33 47 02 14 44 73 70 99 43 35 33
90 56 61 86 56 12 70 59 63 32 01 15 81 47 71 76 95 32 65 80 54 70 34 51 40 45 33 04 64 55 78 68 88 47 31 47 68 87 03 84 23 44 89 72 35 08 31 76 63 26 90 85 96 67 65 91 19 14 17 86 04 71 32 95
37 13 04 22 64 37 37 28 56 62 86 33 07 37 10 44 52 82 52 06 19 52 57 75 90 26 91 24 06 21 14 67 76 30 46 14 35 89 89 41 03 64 56 97 87 63 22 34 03 79 17 45 11 53 25 56 96 61 23 18 63 31 37 37 47
77 23 26 70 72 76 77 04 28 64 71 69 14 85 96 54 95 48 06 62 99 83 86 77 97 75 71 66 30 19 57 90 33 01 60 61 14 12 90 99 32 77 56 41 18 14 87 49 10 14 90 64 18 50 21 74 14 16 88 05 45 73 82 47 74 44
22 97 41 13 34 31 54 61 56 94 03 24 59 27 98 77 04 09 37 40 12 26 87 09 71 70 07 18 64 57 80 21 12 71 83 94 60 39 73 79 73 19 97 32 64 29 41 07 48 84 85 67 12 74 95 20 24 52 41 67 56 61 29 93 35 72 69
72 23 63 66 01 11 07 30 52 56 95 16 65 26 83 90 50 74 60 18 16 48 43 77 37 11 99 98 30 94 91 26 62 73 45 12 87 73 47 27 01 88 66 99 21 41 95 80 02 53 23 32 61 48 32 43 43 83 14 66 95 91 19 81 80 67 25 88
08 62 32 18 92 14 83 71 37 96 11 83 39 99 05 16 23 27 10 67 02 25 44 11 55 31 46 64 41 56 44 74 26 81 51 31 45 85 87 09 81 95 22 28 76 69 46 48 64 87 67 76 27 89 31 11 74 16 62 03 60 94 42 47 09 34 94 93 72
56 18 90 18 42 17 42 32 14 86 06 53 33 95 99 35 29 15 44 20 49 59 25 54 34 59 84 21 23 54 35 90 78 16 93 13 37 88 54 19 86 67 68 55 66 84 65 42 98 37 87 56 33 28 58 38 28 38 66 27 52 21 81 15 08 22 97 32 85 27
91 53 40 28 13 34 91 25 01 63 50 37 22 49 71 58 32 28 30 18 68 94 23 83 63 62 94 76 80 41 90 22 82 52 29 12 18 56 10 08 35 14 37 57 23 65 67 40 72 39 93 39 70 89 40 34 07 46 94 22 20 05 53 64 56 30 05 56 61 88 27
23 95 11 12 37 69 68 24 66 10 87 70 43 50 75 07 62 41 83 58 95 93 89 79 45 39 02 22 05 22 95 43 62 11 68 29 17 40 26 44 25 71 87 16 70 85 19 25 59 94 90 41 41 80 61 70 55 60 84 33 95 76 42 63 15 09 03 40 38 12 03 32
09 84 56 80 61 55 85 97 16 94 82 94 98 57 84 30 84 48 93 90 71 05 95 90 73 17 30 98 40 64 65 89 07 79 09 19 56 36 42 30 23 69 73 72 07 05 27 61 24 31 43 48 71 84 21 28 26 65 65 59 65 74 77 20 10 81 61 84 95 08 52 23 70
47 81 28 09 98 51 67 64 35 51 59 36 92 82 77 65 80 24 72 53 22 07 27 10 21 28 30 22 48 82 80 48 56 20 14 43 18 25 50 95 90 31 77 08 09 48 44 80 90 22 93 45 82 17 13 96 25 26 08 73 34 99 06 49 24 06 83 51 40 14 15 10 25 01
54 25 10 81 30 64 24 74 75 80 36 75 82 60 22 69 72 91 45 67 03 62 79 54 89 74 44 83 64 96 66 73 44 30 74 50 37 05 09 97 70 01 60 46 37 91 39 75 75 18 58 52 72 78 51 81 86 52 08 97 01 46 43 66 98 62 81 18 70 93 73 08 32 46 34
96 80 82 07 59 71 92 53 19 20 88 66 03 26 26 10 24 27 50 82 94 73 63 08 51 33 22 45 19 13 58 33 90 15 22 50 36 13 55 06 35 47 82 52 33 61 36 27 28 46 98 14 73 20 73 32 16 26 80 53 47 66 76 38 94 45 02 01 22 52 47 96 64 58 52 39
88 46 23 39 74 63 81 64 20 90 33 33 76 55 58 26 10 46 42 26 74 74 12 83 32 43 09 02 73 55 86 54 85 34 28 23 29 79 91 62 47 41 82 87 99 22 48 90 20 05 96 75 95 04 43 28 81 39 81 01 28 42 78 25 39 77 90 57 58 98 17 36 73 22 63 74 51
29 39 74 94 95 78 64 24 38 86 63 87 93 06 70 92 22 16 80 64 29 52 20 27 23 50 14 13 87 15 72 96 81 22 08 49 72 30 70 24 79 31 16 64 59 21 89 34 96 91 48 76 43 53 88 01 57 80 23 81 90 79 58 01 80 87 17 99 86 90 72 63 32 69 14 28 88 69
37 17 71 95 56 93 71 35 43 45 04 98 92 94 84 96 11 30 31 27 31 60 92 03 48 05 98 91 86 94 35 90 90 08 48 19 33 28 68 37 59 26 65 96 50 68 22 07 09 49 34 31 77 49 43 06 75 17 81 87 61 79 52 26 27 72 29 50 07 98 86 01 17 10 46 64 24 18 56
51 30 25 94 88 85 79 91 40 33 63 84 49 67 98 92 15 26 75 19 82 05 18 78 65 93 61 48 91 43 59 41 70 51 22 15 92 81 67 91 46 98 11 11 65 31 66 10 98 65 83 21 05 56 05 98 73 67 46 74 69 34 08 30 05 52 07 98 32 95 30 94 65 50 24 63 28 81 99 57
19 23 61 36 09 89 71 98 65 17 30 29 89 26 79 74 94 11 44 48 97 54 81 55 39 66 69 45 28 47 13 86 15 76 74 70 84 32 36 33 79 20 78 14 41 47 89 28 81 05 99 66 81 86 38 26 06 25 13 60 54 55 23 53 27 05 89 25 23 11 13 54 59 54 56 34 16 24 53 44 06
13 40 57 72 21 15 60 08 04 19 11 98 34 45 09 97 86 71 03 15 56 19 15 44 97 31 90 04 87 87 76 08 12 30 24 62 84 28 12 85 82 53 99 52 13 94 06 65 97 86 09 50 94 68 69 74 30 67 87 94 63 07 78 27 80 36 69 41 06 92 32 78 37 82 30 05 18 87 99 72 19 99
44 20 55 77 69 91 27 31 28 81 80 27 02 07 97 23 95 98 12 25 75 29 47 71 07 47 78 39 41 59 27 76 13 15 66 61 68 35 69 86 16 53 67 63 99 85 41 56 08 28 33 40 94 76 90 85 31 70 24 65 84 65 99 82 19 25 54 37 21 46 33 02 52 99 51 33 26 04 87 02 08 18 96
54 42 61 45 91 06 64 79 80 82 32 16 83 63 42 49 19 78 65 97 40 42 14 61 49 34 04 18 25 98 59 30 82 72 26 88 54 36 21 75 03 88 99 53 46 51 55 78 22 94 34 40 68 87 84 25 30 76 25 08 92 84 42 61 40 38 09 99 40 23 29 39 46 55 10 90 35 84 56 70 63 23 91 39
52 92 03 71 89 07 09 37 68 66 58 20 44 92 51 56 13 71 79 99 26 37 02 06 16 67 36 52 58 16 79 73 56 60 59 27 44 77 94 82 20 50 98 33 09 87 94 37 40 83 64 83 58 85 17 76 53 02 83 52 22 27 39 20 48 92 45 21 09 42 24 23 12 37 52 28 50 78 79 20 86 62 73 20 59
54 96 80 15 91 90 99 70 10 09 58 90 93 50 81 99 54 38 36 10 30 11 35 84 16 45 82 18 11 97 36 43 96 79 97 65 40 48 23 19 17 31 64 52 65 65 37 32 65 76 99 79 34 65 79 27 55 33 03 01 33 27 61 28 66 08 04 70 49 46 48 83 01 45 19 96 13 81 14 21 31 79 93 85 50 05
92 92 48 84 59 98 31 53 23 27 15 22 79 95 24 76 05 79 16 93 97 89 38 89 42 83 02 88 94 95 82 21 01 97 48 39 31 78 09 65 50 56 97 61 01 07 65 27 21 23 14 15 80 97 44 78 49 35 33 45 81 74 34 05 31 57 09 38 94 07 69 54 69 32 65 68 46 68 78 90 24 28 49 51 45 86 35
41 63 89 76 87 31 86 09 46 14 87 82 22 29 47 16 13 10 70 72 82 95 48 64 58 43 13 75 42 69 21 12 67 13 64 85 58 23 98 09 37 76 05 22 31 12 66 50 29 99 86 72 45 25 10 28 19 06 90 43 29 31 67 79 46 25 74 14 97 35 76 37 65 46 23 82 06 22 30 76 93 66 94 17 96 13 20 72
63 40 78 08 52 09 90 41 70 28 36 14 46 44 85 96 24 52 58 15 87 37 05 98 99 39 13 61 76 38 44 99 83 74 90 22 53 80 56 98 30 51 63 39 44 30 91 91 04 22 27 73 17 35 53 18 35 45 54 56 27 78 48 13 69 36 44 38 71 25 30 56 15 22 73 43 32 69 59 25 93 83 45 11 34 94 44 39 92
12 36 56 88 13 96 16 12 55 54 11 47 19 78 17 17 68 81 77 51 42 55 99 85 66 27 81 79 93 42 65 61 69 74 14 01 18 56 12 01 58 37 91 22 42 66 83 25 19 04 96 41 25 45 18 69 96 88 36 93 10 12 98 32 44 83 83 04 72 91 04 27 73 07 34 37 71 60 59 31 01 54 54 44 96 93 83 36 04 45
30 18 22 20 42 96 65 79 17 41 55 69 94 81 29 80 91 31 85 25 47 26 43 49 02 99 34 67 99 76 16 14 15 93 08 32 99 44 61 77 67 50 43 55 87 55 53 72 17 46 62 25 50 99 73 05 93 48 17 31 70 80 59 09 44 59 45 13 74 66 58 94 87 73 16 14 85 38 74 99 64 23 79 28 71 42 20 37 82 31 23
51 96 39 65 46 71 56 13 29 68 53 86 45 33 51 49 12 91 21 21 76 85 02 17 98 15 46 12 60 21 88 30 92 83 44 59 42 50 27 88 46 86 94 73 45 54 23 24 14 10 94 21 20 34 23 51 04 83 99 75 90 63 60 16 22 33 83 70 11 32 10 50 29 30 83 46 11 05 31 17 86 42 49 01 44 63 28 60 07 78 95 40
44 61 89 59 04 49 51 27 69 71 46 76 44 04 09 34 56 39 15 06 94 91 75 90 65 27 56 23 74 06 23 33 36 69 14 39 05 34 35 57 33 22 76 46 56 10 61 65 98 09 16 69 04 62 65 18 99 76 49 18 72 66 73 83 82 40 76 31 89 91 27 88 17 35 41 35 32 51 32 67 52 68 74 85 80 57 07 11 62 66 47 22 67
65 37 19 97 26 17 16 24 24 17 50 37 64 82 24 36 32 11 68 34 69 31 32 89 79 93 96 68 49 90 14 23 04 04 67 99 81 74 70 74 36 96 68 09 64 39 88 35 54 89 96 58 66 27 88 97 32 14 06 35 78 20 71 06 85 66 57 02 58 91 72 05 29 56 73 48 86 52 09 93 22 57 79 42 12 01 31 68 17 59 63 76 07 77
73 81 14 13 17 20 11 09 01 83 08 85 91 70 84 63 62 77 37 07 47 01 59 95 39 69 39 21 99 09 87 02 97 16 92 36 74 71 90 66 33 73 73 75 52 91 11 12 26 53 05 26 26 48 61 50 90 65 01 87 42 47 74 35 22 73 24 26 56 70 52 05 48 41 31 18 83 27 21 39 80 85 26 08 44 02 71 07 63 22 05 52 19 08 20
17 25 21 11 72 93 33 49 64 23 53 82 03 13 91 65 85 02 40 05 42 31 77 42 05 36 06 54 04 58 07 76 87 83 25 57 66 12 74 33 85 37 74 32 20 69 03 97 91 68 82 44 19 14 89 28 85 85 80 53 34 87 58 98 88 78 48 65 98 40 11 57 10 67 70 81 60 79 74 72 97 59 79 47 30 20 54 80 89 91 14 05 33 36 79 39
60 85 59 39 60 07 57 76 77 92 06 35 15 72 23 41 45 52 95 18 64 79 86 53 56 31 69 11 91 31 84 50 44 82 22 81 41 40 30 42 30 91 48 94 74 76 64 58 74 25 96 57 14 19 03 99 28 83 15 75 99 01 89 85 79 50 03 95 32 67 44 08 07 41 62 64 29 20 14 76 26 55 48 71 69 66 19 72 44 25 14 01 48 74 12 98 07
64 66 84 24 18 16 27 48 20 14 47 69 30 86 48 40 23 16 61 21 51 50 26 47 35 33 91 28 78 64 43 68 04 79 51 08 19 60 52 95 06 68 46 86 35 97 27 58 04 65 30 58 99 12 12 75 91 39 50 31 42 64 70 04 46 07 98 73 98 93 37 89 77 91 64 71 64 65 66 21 78 62 81 74 42 20 83 70 73 95 78 45 92 27 34 53 71 15
30 11 85 31 34 71 13 48 05 14 44 03 19 67 23 73 19 57 06 90 94 72 57 69 81 62 59 68 88 57 55 69 49 13 07 87 97 80 89 05 71 05 05 26 38 40 16 62 45 99 18 38 98 24 21 26 62 74 69 04 85 57 77 35 58 67 91 79 79 57 86 28 66 34 72 51 76 78 36 95 63 90 08 78 47 63 45 31 22 70 52 48 79 94 15 77 61 67 68
23 33 44 81 80 92 93 75 94 88 23 61 39 76 22 03 28 94 32 06 49 65 41 34 18 23 08 47 62 60 03 63 33 13 80 52 31 54 73 43 70 26 16 69 57 87 83 31 03 93 70 81 47 95 77 44 29 68 39 51 56 59 63 07 25 70 07 77 43 53 64 03 94 42 95 39 18 01 66 21 16 97 20 50 90 16 70 10 95 69 29 06 25 61 41 26 15 59 63 35
]]
--This is done using a breadth first search
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
--[[ This is what locations should look like
location = {
xLocation = 0,
yLocation = 0,
total = 0,
fromRight = false
};
]]
function invert(list)
for rowCnt=1,NUM_ROWS do
for colCnt=1,#list[rowCnt] do
list[rowCnt][colCnt] = 100 - list[rowCnt][colCnt];
end
end
end
function foundInList(list, loc)
for location=1,#list do
if((list[location].xLocation == loc.xLocation) and (list[location].yLocation == loc.yLocation)) then
return true;
end
end
return false;
end
function remove_if(list, loc)
location = 1;
while(location <= #list) do
if((list[location].xLocation == loc.xLocation) and (list[location].yLocation == loc.yLocation)) then
table.remove(list, location);
else
location = location + 1;
end
end
end
--Create a timer and time the algorithm
timer = Stopwatch:create();
timer:start();
NUM_ROWS = 100;
list = {};
list[1] = {59};
list[2] = {73, 41};
list[3] = {52, 40, 9};
list[4] = {26, 53, 06, 34};
list[5] = {10, 51, 87, 86, 81};
list[6] = {61, 95, 66, 57, 25, 68};
list[7] = {90, 81, 80, 38, 92, 67, 73};
list[8] = {30, 28, 51, 76, 81, 18, 75, 44};
list[9] = {84, 14, 95, 87, 62, 81, 17, 78, 58};
list[10] = {21, 46, 71, 58, 02, 79, 62, 39, 31, 9};
list[11] = {56, 34, 35, 53, 78, 31, 81, 18, 90, 93, 15};
list[12] = {78, 53, 04, 21, 84, 93, 32, 13, 97, 11, 37, 51};
list[13] = {45, 03, 81, 79, 05, 18, 78, 86, 13, 30, 63, 99, 95};
list[14] = {39, 87, 96, 28, 03, 38, 42, 17, 82, 87, 58, 07, 22, 57};
list[15] = {06, 17, 51, 17, 07, 93, 9, 07, 75, 97, 95, 78, 87, 8, 53};
list[16] = {67, 66, 59, 60, 88, 99, 94, 65, 55, 77, 55, 34, 27, 53, 78, 28};
list[17] = {76, 40, 41, 04, 87, 16, 9, 42, 75, 69, 23, 97, 30, 60, 10, 79, 87};
list[18] = {12, 10, 44, 26, 21, 36, 32, 84, 98, 60, 13, 12, 36, 16, 63, 31, 91, 35};
list[19] = {70, 39, 06, 05, 55, 27, 38, 48, 28, 22, 34, 35, 62, 62, 15, 14, 94, 89, 86};
list[20] = {66, 56, 68, 84, 96, 21, 34, 34, 34, 81, 62, 40, 65, 54, 62, 05, 98, 03, 02, 60};
list[21] = {38, 89, 46, 37, 99, 54, 34, 53, 36, 14, 70, 26, 02, 90, 45, 13, 31, 61, 83, 73, 47};
list[22] = {36, 10, 63, 96, 60, 49, 41, 05, 37, 42, 14, 58, 84, 93, 96, 17, 9, 43, 05, 43, 06, 59};
list[23] = {66, 57, 87, 57, 61, 28, 37, 51, 84, 73, 79, 15, 39, 95, 88, 87, 43, 39, 11, 86, 77, 74, 18};
list[24] = {54, 42, 05, 79, 30, 49, 99, 73, 46, 37, 50, 02, 45, 9, 54, 52, 27, 95, 27, 65, 19, 45, 26, 45};
list[25] = {71, 39, 17, 78, 76, 29, 52, 90, 18, 99, 78, 19, 35, 62, 71, 19, 23, 65, 93, 85, 49, 33, 75, 9, 02};
list[26] = {33, 24, 47, 61, 60, 55, 32, 88, 57, 55, 91, 54, 46, 57, 07, 77, 98, 52, 80, 99, 24, 25, 46, 78, 79, 05};
list[27] = {92, 9, 13, 55, 10, 67, 26, 78, 76, 82, 63, 49, 51, 31, 24, 68, 05, 57, 07, 54, 69, 21, 67, 43, 17, 63, 12};
list[28] = {24, 59, 06, 8, 98, 74, 66, 26, 61, 60, 13, 03, 9, 9, 24, 30, 71, 8, 88, 70, 72, 70, 29, 90, 11, 82, 41, 34};
list[29] = {66, 82, 67, 04, 36, 60, 92, 77, 91, 85, 62, 49, 59, 61, 30, 90, 29, 94, 26, 41, 89, 04, 53, 22, 83, 41, 9, 74, 90};
list[30] = {48, 28, 26, 37, 28, 52, 77, 26, 51, 32, 18, 98, 79, 36, 62, 13, 17, 8, 19, 54, 89, 29, 73, 68, 42, 14, 8, 16, 70, 37};
list[31] = {37, 60, 69, 70, 72, 71, 9, 59, 13, 60, 38, 13, 57, 36, 9, 30, 43, 89, 30, 39, 15, 02, 44, 73, 05, 73, 26, 63, 56, 86, 12};
list[32] = {55, 55, 85, 50, 62, 99, 84, 77, 28, 85, 03, 21, 27, 22, 19, 26, 82, 69, 54, 04, 13, 07, 85, 14, 01, 15, 70, 59, 89, 95, 10, 19};
list[33] = {04, 9, 31, 92, 91, 38, 92, 86, 98, 75, 21, 05, 64, 42, 62, 84, 36, 20, 73, 42, 21, 23, 22, 51, 51, 79, 25, 45, 85, 53, 03, 43, 22};
list[34] = {75, 63, 02, 49, 14, 12, 89, 14, 60, 78, 92, 16, 44, 82, 38, 30, 72, 11, 46, 52, 90, 27, 8, 65, 78, 03, 85, 41, 57, 79, 39, 52, 33, 48};
list[35] = {78, 27, 56, 56, 39, 13, 19, 43, 86, 72, 58, 95, 39, 07, 04, 34, 21, 98, 39, 15, 39, 84, 89, 69, 84, 46, 37, 57, 59, 35, 59, 50, 26, 15, 93};
list[36] = {42, 89, 36, 27, 78, 91, 24, 11, 17, 41, 05, 94, 07, 69, 51, 96, 03, 96, 47, 90, 90, 45, 91, 20, 50, 56, 10, 32, 36, 49, 04, 53, 85, 92, 25, 65};
list[37] = {52, 9, 61, 30, 61, 97, 66, 21, 96, 92, 98, 90, 06, 34, 96, 60, 32, 69, 68, 33, 75, 84, 18, 31, 71, 50, 84, 63, 03, 03, 19, 11, 28, 42, 75, 45, 45};
list[38] = {61, 31, 61, 68, 96, 34, 49, 39, 05, 71, 76, 59, 62, 67, 06, 47, 96, 99, 34, 21, 32, 47, 52, 07, 71, 60, 42, 72, 94, 56, 82, 83, 84, 40, 94, 87, 82, 46};
list[39] = {01, 20, 60, 14, 17, 38, 26, 78, 66, 81, 45, 95, 18, 51, 98, 81, 48, 16, 53, 88, 37, 52, 69, 95, 72, 93, 22, 34, 98, 20, 54, 27, 73, 61, 56, 63, 60, 34, 63};
list[40] = {93, 42, 94, 83, 47, 61, 27, 51, 79, 79, 45, 01, 44, 73, 31, 70, 83, 42, 88, 25, 53, 51, 30, 15, 65, 94, 80, 44, 61, 84, 12, 77, 02, 62, 02, 65, 94, 42, 14, 94};
list[41] = {32, 73, 9, 67, 68, 29, 74, 98, 10, 19, 85, 48, 38, 31, 85, 67, 53, 93, 93, 77, 47, 67, 39, 72, 94, 53, 18, 43, 77, 40, 78, 32, 29, 59, 24, 06, 02, 83, 50, 60, 66};
list[42] = {32, 01, 44, 30, 16, 51, 15, 81, 98, 15, 10, 62, 86, 79, 50, 62, 45, 60, 70, 38, 31, 85, 65, 61, 64, 06, 69, 84, 14, 22, 56, 43, 9, 48, 66, 69, 83, 91, 60, 40, 36, 61};
list[43] = {92, 48, 22, 99, 15, 95, 64, 43, 01, 16, 94, 02, 99, 19, 17, 69, 11, 58, 97, 56, 89, 31, 77, 45, 67, 96, 12, 73, 8, 20, 36, 47, 81, 44, 50, 64, 68, 85, 40, 81, 85, 52, 9};
list[44] = {91, 35, 92, 45, 32, 84, 62, 15, 19, 64, 21, 66, 06, 01, 52, 80, 62, 59, 12, 25, 88, 28, 91, 50, 40, 16, 22, 99, 92, 79, 87, 51, 21, 77, 74, 77, 07, 42, 38, 42, 74, 83, 02, 05};
list[45] = {46, 19, 77, 66, 24, 18, 05, 32, 02, 84, 31, 99, 92, 58, 96, 72, 91, 36, 62, 99, 55, 29, 53, 42, 12, 37, 26, 58, 89, 50, 66, 19, 82, 75, 12, 48, 24, 87, 91, 85, 02, 07, 03, 76, 86};
list[46] = {99, 98, 84, 93, 07, 17, 33, 61, 92, 20, 66, 60, 24, 66, 40, 30, 67, 05, 37, 29, 24, 96, 03, 27, 70, 62, 13, 04, 45, 47, 59, 88, 43, 20, 66, 15, 46, 92, 30, 04, 71, 66, 78, 70, 53, 99};
list[47] = {67, 60, 38, 06, 88, 04, 17, 72, 10, 99, 71, 07, 42, 25, 54, 05, 26, 64, 91, 50, 45, 71, 06, 30, 67, 48, 69, 82, 8, 56, 80, 67, 18, 46, 66, 63, 01, 20, 8, 80, 47, 07, 91, 16, 03, 79, 87};
list[48] = {18, 54, 78, 49, 80, 48, 77, 40, 68, 23, 60, 88, 58, 80, 33, 57, 11, 69, 55, 53, 64, 02, 94, 49, 60, 92, 16, 35, 81, 21, 82, 96, 25, 24, 96, 18, 02, 05, 49, 03, 50, 77, 06, 32, 84, 27, 18, 38};
list[49] = {68, 01, 50, 04, 03, 21, 42, 94, 53, 24, 89, 05, 92, 26, 52, 36, 68, 11, 85, 01, 04, 42, 02, 45, 15, 06, 50, 04, 53, 73, 25, 74, 81, 88, 98, 21, 67, 84, 79, 97, 99, 20, 95, 04, 40, 46, 02, 58, 87};
list[50] = {94, 10, 02, 78, 88, 52, 21, 03, 88, 60, 06, 53, 49, 71, 20, 91, 12, 65, 07, 49, 21, 22, 11, 41, 58, 99, 36, 16, 9, 48, 17, 24, 52, 36, 23, 15, 72, 16, 84, 56, 02, 99, 43, 76, 81, 71, 29, 39, 49, 17};
list[51] = {64, 39, 59, 84, 86, 16, 17, 66, 03, 9, 43, 06, 64, 18, 63, 29, 68, 06, 23, 07, 87, 14, 26, 35, 17, 12, 98, 41, 53, 64, 78, 18, 98, 27, 28, 84, 80, 67, 75, 62, 10, 11, 76, 90, 54, 10, 05, 54, 41, 39, 66};
list[52] = {43, 83, 18, 37, 32, 31, 52, 29, 95, 47, 8, 76, 35, 11, 04, 53, 35, 43, 34, 10, 52, 57, 12, 36, 20, 39, 40, 55, 78, 44, 07, 31, 38, 26, 8, 15, 56, 88, 86, 01, 52, 62, 10, 24, 32, 05, 60, 65, 53, 28, 57, 99};
list[53] = {03, 50, 03, 52, 07, 73, 49, 92, 66, 80, 01, 46, 8, 67, 25, 36, 73, 93, 07, 42, 25, 53, 13, 96, 76, 83, 87, 90, 54, 89, 78, 22, 78, 91, 73, 51, 69, 9, 79, 94, 83, 53, 9, 40, 69, 62, 10, 79, 49, 47, 03, 81, 30};
list[54] = {71, 54, 73, 33, 51, 76, 59, 54, 79, 37, 56, 45, 84, 17, 62, 21, 98, 69, 41, 95, 65, 24, 39, 37, 62, 03, 24, 48, 54, 64, 46, 82, 71, 78, 33, 67, 9, 16, 96, 68, 52, 74, 79, 68, 32, 21, 13, 78, 96, 60, 9, 69, 20, 36};
list[55] = {73, 26, 21, 44, 46, 38, 17, 83, 65, 98, 07, 23, 52, 46, 61, 97, 33, 13, 60, 31, 70, 15, 36, 77, 31, 58, 56, 93, 75, 68, 21, 36, 69, 53, 90, 75, 25, 82, 39, 50, 65, 94, 29, 30, 11, 33, 11, 13, 96, 02, 56, 47, 07, 49, 02};
list[56] = {76, 46, 73, 30, 10, 20, 60, 70, 14, 56, 34, 26, 37, 39, 48, 24, 55, 76, 84, 91, 39, 86, 95, 61, 50, 14, 53, 93, 64, 67, 37, 31, 10, 84, 42, 70, 48, 20, 10, 72, 60, 61, 84, 79, 69, 65, 99, 73, 89, 25, 85, 48, 92, 56, 97, 16};
list[57] = {03, 14, 80, 27, 22, 30, 44, 27, 67, 75, 79, 32, 51, 54, 81, 29, 65, 14, 19, 04, 13, 82, 04, 91, 43, 40, 12, 52, 29, 99, 07, 76, 60, 25, 01, 07, 61, 71, 37, 92, 40, 47, 99, 66, 57, 01, 43, 44, 22, 40, 53, 53, 9, 69, 26, 81, 07};
list[58] = {49, 80, 56, 90, 93, 87, 47, 13, 75, 28, 87, 23, 72, 79, 32, 18, 27, 20, 28, 10, 37, 59, 21, 18, 70, 04, 79, 96, 03, 31, 45, 71, 81, 06, 14, 18, 17, 05, 31, 50, 92, 79, 23, 47, 9, 39, 47, 91, 43, 54, 69, 47, 42, 95, 62, 46, 32, 85};
list[59] = {37, 18, 62, 85, 87, 28, 64, 05, 77, 51, 47, 26, 30, 65, 05, 70, 65, 75, 59, 80, 42, 52, 25, 20, 44, 10, 92, 17, 71, 95, 52, 14, 77, 13, 24, 55, 11, 65, 26, 91, 01, 30, 63, 15, 49, 48, 41, 17, 67, 47, 03, 68, 20, 90, 98, 32, 04, 40, 68};
list[60] = {90, 51, 58, 60, 06, 55, 23, 68, 05, 19, 76, 94, 82, 36, 96, 43, 38, 90, 87, 28, 33, 83, 05, 17, 70, 83, 96, 93, 06, 04, 78, 47, 80, 06, 23, 84, 75, 23, 87, 72, 99, 14, 50, 98, 92, 38, 90, 64, 61, 58, 76, 94, 36, 66, 87, 80, 51, 35, 61, 38};
list[61] = {57, 95, 64, 06, 53, 36, 82, 51, 40, 33, 47, 14, 07, 98, 78, 65, 39, 58, 53, 06, 50, 53, 04, 69, 40, 68, 36, 69, 75, 78, 75, 60, 03, 32, 39, 24, 74, 47, 26, 90, 13, 40, 44, 71, 90, 76, 51, 24, 36, 50, 25, 45, 70, 80, 61, 80, 61, 43, 90, 64, 11};
list[62] = {18, 29, 86, 56, 68, 42, 79, 10, 42, 44, 30, 12, 96, 18, 23, 18, 52, 59, 02, 99, 67, 46, 60, 86, 43, 38, 55, 17, 44, 93, 42, 21, 55, 14, 47, 34, 55, 16, 49, 24, 23, 29, 96, 51, 55, 10, 46, 53, 27, 92, 27, 46, 63, 57, 30, 65, 43, 27, 21, 20, 24, 83};
list[63] = {81, 72, 93, 19, 69, 52, 48, 01, 13, 83, 92, 69, 20, 48, 69, 59, 20, 62, 05, 42, 28, 89, 90, 99, 32, 72, 84, 17, 8, 87, 36, 03, 60, 31, 36, 36, 81, 26, 97, 36, 48, 54, 56, 56, 27, 16, 91, 8, 23, 11, 87, 99, 33, 47, 02, 14, 44, 73, 70, 99, 43, 35, 33};
list[64] = {90, 56, 61, 86, 56, 12, 70, 59, 63, 32, 01, 15, 81, 47, 71, 76, 95, 32, 65, 80, 54, 70, 34, 51, 40, 45, 33, 04, 64, 55, 78, 68, 88, 47, 31, 47, 68, 87, 03, 84, 23, 44, 89, 72, 35, 8, 31, 76, 63, 26, 90, 85, 96, 67, 65, 91, 19, 14, 17, 86, 04, 71, 32, 95};
list[65] = {37, 13, 04, 22, 64, 37, 37, 28, 56, 62, 86, 33, 07, 37, 10, 44, 52, 82, 52, 06, 19, 52, 57, 75, 90, 26, 91, 24, 06, 21, 14, 67, 76, 30, 46, 14, 35, 89, 89, 41, 03, 64, 56, 97, 87, 63, 22, 34, 03, 79, 17, 45, 11, 53, 25, 56, 96, 61, 23, 18, 63, 31, 37, 37, 47};
list[66] = {77, 23, 26, 70, 72, 76, 77, 04, 28, 64, 71, 69, 14, 85, 96, 54, 95, 48, 06, 62, 99, 83, 86, 77, 97, 75, 71, 66, 30, 19, 57, 90, 33, 01, 60, 61, 14, 12, 90, 99, 32, 77, 56, 41, 18, 14, 87, 49, 10, 14, 90, 64, 18, 50, 21, 74, 14, 16, 88, 05, 45, 73, 82, 47, 74, 44};
list[67] = {22, 97, 41, 13, 34, 31, 54, 61, 56, 94, 03, 24, 59, 27, 98, 77, 04, 9, 37, 40, 12, 26, 87, 9, 71, 70, 07, 18, 64, 57, 80, 21, 12, 71, 83, 94, 60, 39, 73, 79, 73, 19, 97, 32, 64, 29, 41, 07, 48, 84, 85, 67, 12, 74, 95, 20, 24, 52, 41, 67, 56, 61, 29, 93, 35, 72, 69};
list[68] = {72, 23, 63, 66, 01, 11, 07, 30, 52, 56, 95, 16, 65, 26, 83, 90, 50, 74, 60, 18, 16, 48, 43, 77, 37, 11, 99, 98, 30, 94, 91, 26, 62, 73, 45, 12, 87, 73, 47, 27, 01, 88, 66, 99, 21, 41, 95, 80, 02, 53, 23, 32, 61, 48, 32, 43, 43, 83, 14, 66, 95, 91, 19, 81, 80, 67, 25, 88};
list[69] = { 8, 62, 32, 18, 92, 14, 83, 71, 37, 96, 11, 83, 39, 99, 05, 16, 23, 27, 10, 67, 02, 25, 44, 11, 55, 31, 46, 64, 41, 56, 44, 74, 26, 81, 51, 31, 45, 85, 87, 9, 81, 95, 22, 28, 76, 69, 46, 48, 64, 87, 67, 76, 27, 89, 31, 11, 74, 16, 62, 03, 60, 94, 42, 47, 9, 34, 94, 93, 72};
list[70] = {56, 18, 90, 18, 42, 17, 42, 32, 14, 86, 06, 53, 33, 95, 99, 35, 29, 15, 44, 20, 49, 59, 25, 54, 34, 59, 84, 21, 23, 54, 35, 90, 78, 16, 93, 13, 37, 88, 54, 19, 86, 67, 68, 55, 66, 84, 65, 42, 98, 37, 87, 56, 33, 28, 58, 38, 28, 38, 66, 27, 52, 21, 81, 15, 8, 22, 97, 32, 85, 27};
list[71] = {91, 53, 40, 28, 13, 34, 91, 25, 01, 63, 50, 37, 22, 49, 71, 58, 32, 28, 30, 18, 68, 94, 23, 83, 63, 62, 94, 76, 80, 41, 90, 22, 82, 52, 29, 12, 18, 56, 10, 8, 35, 14, 37, 57, 23, 65, 67, 40, 72, 39, 93, 39, 70, 89, 40, 34, 07, 46, 94, 22, 20, 05, 53, 64, 56, 30, 05, 56, 61, 88, 27};
list[72] = {23, 95, 11, 12, 37, 69, 68, 24, 66, 10, 87, 70, 43, 50, 75, 07, 62, 41, 83, 58, 95, 93, 89, 79, 45, 39, 02, 22, 05, 22, 95, 43, 62, 11, 68, 29, 17, 40, 26, 44, 25, 71, 87, 16, 70, 85, 19, 25, 59, 94, 90, 41, 41, 80, 61, 70, 55, 60, 84, 33, 95, 76, 42, 63, 15, 9, 03, 40, 38, 12, 03, 32};
list[73] = { 9, 84, 56, 80, 61, 55, 85, 97, 16, 94, 82, 94, 98, 57, 84, 30, 84, 48, 93, 90, 71, 05, 95, 90, 73, 17, 30, 98, 40, 64, 65, 89, 07, 79, 9, 19, 56, 36, 42, 30, 23, 69, 73, 72, 07, 05, 27, 61, 24, 31, 43, 48, 71, 84, 21, 28, 26, 65, 65, 59, 65, 74, 77, 20, 10, 81, 61, 84, 95, 8, 52, 23, 70};
list[74] = {47, 81, 28, 9, 98, 51, 67, 64, 35, 51, 59, 36, 92, 82, 77, 65, 80, 24, 72, 53, 22, 07, 27, 10, 21, 28, 30, 22, 48, 82, 80, 48, 56, 20, 14, 43, 18, 25, 50, 95, 90, 31, 77, 8, 9, 48, 44, 80, 90, 22, 93, 45, 82, 17, 13, 96, 25, 26, 8, 73, 34, 99, 06, 49, 24, 06, 83, 51, 40, 14, 15, 10, 25, 01};
list[75] = {54, 25, 10, 81, 30, 64, 24, 74, 75, 80, 36, 75, 82, 60, 22, 69, 72, 91, 45, 67, 03, 62, 79, 54, 89, 74, 44, 83, 64, 96, 66, 73, 44, 30, 74, 50, 37, 05, 9, 97, 70, 01, 60, 46, 37, 91, 39, 75, 75, 18, 58, 52, 72, 78, 51, 81, 86, 52, 8, 97, 01, 46, 43, 66, 98, 62, 81, 18, 70, 93, 73, 8, 32, 46, 34};
list[76] = {96, 80, 82, 07, 59, 71, 92, 53, 19, 20, 88, 66, 03, 26, 26, 10, 24, 27, 50, 82, 94, 73, 63, 8, 51, 33, 22, 45, 19, 13, 58, 33, 90, 15, 22, 50, 36, 13, 55, 06, 35, 47, 82, 52, 33, 61, 36, 27, 28, 46, 98, 14, 73, 20, 73, 32, 16, 26, 80, 53, 47, 66, 76, 38, 94, 45, 02, 01, 22, 52, 47, 96, 64, 58, 52, 39};
list[77] = {88, 46, 23, 39, 74, 63, 81, 64, 20, 90, 33, 33, 76, 55, 58, 26, 10, 46, 42, 26, 74, 74, 12, 83, 32, 43, 9, 02, 73, 55, 86, 54, 85, 34, 28, 23, 29, 79, 91, 62, 47, 41, 82, 87, 99, 22, 48, 90, 20, 05, 96, 75, 95, 04, 43, 28, 81, 39, 81, 01, 28, 42, 78, 25, 39, 77, 90, 57, 58, 98, 17, 36, 73, 22, 63, 74, 51};
list[78] = {29, 39, 74, 94, 95, 78, 64, 24, 38, 86, 63, 87, 93, 06, 70, 92, 22, 16, 80, 64, 29, 52, 20, 27, 23, 50, 14, 13, 87, 15, 72, 96, 81, 22, 8, 49, 72, 30, 70, 24, 79, 31, 16, 64, 59, 21, 89, 34, 96, 91, 48, 76, 43, 53, 88, 01, 57, 80, 23, 81, 90, 79, 58, 01, 80, 87, 17, 99, 86, 90, 72, 63, 32, 69, 14, 28, 88, 69};
list[79] = {37, 17, 71, 95, 56, 93, 71, 35, 43, 45, 04, 98, 92, 94, 84, 96, 11, 30, 31, 27, 31, 60, 92, 03, 48, 05, 98, 91, 86, 94, 35, 90, 90, 8, 48, 19, 33, 28, 68, 37, 59, 26, 65, 96, 50, 68, 22, 07, 9, 49, 34, 31, 77, 49, 43, 06, 75, 17, 81, 87, 61, 79, 52, 26, 27, 72, 29, 50, 07, 98, 86, 01, 17, 10, 46, 64, 24, 18, 56};
list[80] = {51, 30, 25, 94, 88, 85, 79, 91, 40, 33, 63, 84, 49, 67, 98, 92, 15, 26, 75, 19, 82, 05, 18, 78, 65, 93, 61, 48, 91, 43, 59, 41, 70, 51, 22, 15, 92, 81, 67, 91, 46, 98, 11, 11, 65, 31, 66, 10, 98, 65, 83, 21, 05, 56, 05, 98, 73, 67, 46, 74, 69, 34, 8, 30, 05, 52, 07, 98, 32, 95, 30, 94, 65, 50, 24, 63, 28, 81, 99, 57};
list[81] = {19, 23, 61, 36, 9, 89, 71, 98, 65, 17, 30, 29, 89, 26, 79, 74, 94, 11, 44, 48, 97, 54, 81, 55, 39, 66, 69, 45, 28, 47, 13, 86, 15, 76, 74, 70, 84, 32, 36, 33, 79, 20, 78, 14, 41, 47, 89, 28, 81, 05, 99, 66, 81, 86, 38, 26, 06, 25, 13, 60, 54, 55, 23, 53, 27, 05, 89, 25, 23, 11, 13, 54, 59, 54, 56, 34, 16, 24, 53, 44, 06};
list[82] = {13, 40, 57, 72, 21, 15, 60, 8, 04, 19, 11, 98, 34, 45, 9, 97, 86, 71, 03, 15, 56, 19, 15, 44, 97, 31, 90, 04, 87, 87, 76, 8, 12, 30, 24, 62, 84, 28, 12, 85, 82, 53, 99, 52, 13, 94, 06, 65, 97, 86, 9, 50, 94, 68, 69, 74, 30, 67, 87, 94, 63, 07, 78, 27, 80, 36, 69, 41, 06, 92, 32, 78, 37, 82, 30, 05, 18, 87, 99, 72, 19, 99};
list[83] = {44, 20, 55, 77, 69, 91, 27, 31, 28, 81, 80, 27, 02, 07, 97, 23, 95, 98, 12, 25, 75, 29, 47, 71, 07, 47, 78, 39, 41, 59, 27, 76, 13, 15, 66, 61, 68, 35, 69, 86, 16, 53, 67, 63, 99, 85, 41, 56, 8, 28, 33, 40, 94, 76, 90, 85, 31, 70, 24, 65, 84, 65, 99, 82, 19, 25, 54, 37, 21, 46, 33, 02, 52, 99, 51, 33, 26, 04, 87, 02, 8, 18, 96};
list[84] = {54, 42, 61, 45, 91, 06, 64, 79, 80, 82, 32, 16, 83, 63, 42, 49, 19, 78, 65, 97, 40, 42, 14, 61, 49, 34, 04, 18, 25, 98, 59, 30, 82, 72, 26, 88, 54, 36, 21, 75, 03, 88, 99, 53, 46, 51, 55, 78, 22, 94, 34, 40, 68, 87, 84, 25, 30, 76, 25, 8, 92, 84, 42, 61, 40, 38, 9, 99, 40, 23, 29, 39, 46, 55, 10, 90, 35, 84, 56, 70, 63, 23, 91, 39};
list[85] = {52, 92, 03, 71, 89, 07, 9, 37, 68, 66, 58, 20, 44, 92, 51, 56, 13, 71, 79, 99, 26, 37, 02, 06, 16, 67, 36, 52, 58, 16, 79, 73, 56, 60, 59, 27, 44, 77, 94, 82, 20, 50, 98, 33, 9, 87, 94, 37, 40, 83, 64, 83, 58, 85, 17, 76, 53, 02, 83, 52, 22, 27, 39, 20, 48, 92, 45, 21, 9, 42, 24, 23, 12, 37, 52, 28, 50, 78, 79, 20, 86, 62, 73, 20, 59};
list[86] = {54, 96, 80, 15, 91, 90, 99, 70, 10, 9, 58, 90, 93, 50, 81, 99, 54, 38, 36, 10, 30, 11, 35, 84, 16, 45, 82, 18, 11, 97, 36, 43, 96, 79, 97, 65, 40, 48, 23, 19, 17, 31, 64, 52, 65, 65, 37, 32, 65, 76, 99, 79, 34, 65, 79, 27, 55, 33, 03, 01, 33, 27, 61, 28, 66, 8, 04, 70, 49, 46, 48, 83, 01, 45, 19, 96, 13, 81, 14, 21, 31, 79, 93, 85, 50, 05};
list[87] = {92, 92, 48, 84, 59, 98, 31, 53, 23, 27, 15, 22, 79, 95, 24, 76, 05, 79, 16, 93, 97, 89, 38, 89, 42, 83, 02, 88, 94, 95, 82, 21, 01, 97, 48, 39, 31, 78, 9, 65, 50, 56, 97, 61, 01, 07, 65, 27, 21, 23, 14, 15, 80, 97, 44, 78, 49, 35, 33, 45, 81, 74, 34, 05, 31, 57, 9, 38, 94, 07, 69, 54, 69, 32, 65, 68, 46, 68, 78, 90, 24, 28, 49, 51, 45, 86, 35};
list[88] = {41, 63, 89, 76, 87, 31, 86, 9, 46, 14, 87, 82, 22, 29, 47, 16, 13, 10, 70, 72, 82, 95, 48, 64, 58, 43, 13, 75, 42, 69, 21, 12, 67, 13, 64, 85, 58, 23, 98, 9, 37, 76, 05, 22, 31, 12, 66, 50, 29, 99, 86, 72, 45, 25, 10, 28, 19, 06, 90, 43, 29, 31, 67, 79, 46, 25, 74, 14, 97, 35, 76, 37, 65, 46, 23, 82, 06, 22, 30, 76, 93, 66, 94, 17, 96, 13, 20, 72};
list[89] = {63, 40, 78, 8, 52, 9, 90, 41, 70, 28, 36, 14, 46, 44, 85, 96, 24, 52, 58, 15, 87, 37, 05, 98, 99, 39, 13, 61, 76, 38, 44, 99, 83, 74, 90, 22, 53, 80, 56, 98, 30, 51, 63, 39, 44, 30, 91, 91, 04, 22, 27, 73, 17, 35, 53, 18, 35, 45, 54, 56, 27, 78, 48, 13, 69, 36, 44, 38, 71, 25, 30, 56, 15, 22, 73, 43, 32, 69, 59, 25, 93, 83, 45, 11, 34, 94, 44, 39, 92};
list[90] = {12, 36, 56, 88, 13, 96, 16, 12, 55, 54, 11, 47, 19, 78, 17, 17, 68, 81, 77, 51, 42, 55, 99, 85, 66, 27, 81, 79, 93, 42, 65, 61, 69, 74, 14, 01, 18, 56, 12, 01, 58, 37, 91, 22, 42, 66, 83, 25, 19, 04, 96, 41, 25, 45, 18, 69, 96, 88, 36, 93, 10, 12, 98, 32, 44, 83, 83, 04, 72, 91, 04, 27, 73, 07, 34, 37, 71, 60, 59, 31, 01, 54, 54, 44, 96, 93, 83, 36, 04, 45};
list[91] = {30, 18, 22, 20, 42, 96, 65, 79, 17, 41, 55, 69, 94, 81, 29, 80, 91, 31, 85, 25, 47, 26, 43, 49, 02, 99, 34, 67, 99, 76, 16, 14, 15, 93, 8, 32, 99, 44, 61, 77, 67, 50, 43, 55, 87, 55, 53, 72, 17, 46, 62, 25, 50, 99, 73, 05, 93, 48, 17, 31, 70, 80, 59, 9, 44, 59, 45, 13, 74, 66, 58, 94, 87, 73, 16, 14, 85, 38, 74, 99, 64, 23, 79, 28, 71, 42, 20, 37, 82, 31, 23};
list[92] = {51, 96, 39, 65, 46, 71, 56, 13, 29, 68, 53, 86, 45, 33, 51, 49, 12, 91, 21, 21, 76, 85, 02, 17, 98, 15, 46, 12, 60, 21, 88, 30, 92, 83, 44, 59, 42, 50, 27, 88, 46, 86, 94, 73, 45, 54, 23, 24, 14, 10, 94, 21, 20, 34, 23, 51, 04, 83, 99, 75, 90, 63, 60, 16, 22, 33, 83, 70, 11, 32, 10, 50, 29, 30, 83, 46, 11, 05, 31, 17, 86, 42, 49, 01, 44, 63, 28, 60, 07, 78, 95, 40};
list[93] = {44, 61, 89, 59, 04, 49, 51, 27, 69, 71, 46, 76, 44, 04, 9, 34, 56, 39, 15, 06, 94, 91, 75, 90, 65, 27, 56, 23, 74, 06, 23, 33, 36, 69, 14, 39, 05, 34, 35, 57, 33, 22, 76, 46, 56, 10, 61, 65, 98, 9, 16, 69, 04, 62, 65, 18, 99, 76, 49, 18, 72, 66, 73, 83, 82, 40, 76, 31, 89, 91, 27, 88, 17, 35, 41, 35, 32, 51, 32, 67, 52, 68, 74, 85, 80, 57, 07, 11, 62, 66, 47, 22, 67};
list[94] = {65, 37, 19, 97, 26, 17, 16, 24, 24, 17, 50, 37, 64, 82, 24, 36, 32, 11, 68, 34, 69, 31, 32, 89, 79, 93, 96, 68, 49, 90, 14, 23, 04, 04, 67, 99, 81, 74, 70, 74, 36, 96, 68, 9, 64, 39, 88, 35, 54, 89, 96, 58, 66, 27, 88, 97, 32, 14, 06, 35, 78, 20, 71, 06, 85, 66, 57, 02, 58, 91, 72, 05, 29, 56, 73, 48, 86, 52, 9, 93, 22, 57, 79, 42, 12, 01, 31, 68, 17, 59, 63, 76, 07, 77};
list[95] = {73, 81, 14, 13, 17, 20, 11, 9, 01, 83, 8, 85, 91, 70, 84, 63, 62, 77, 37, 07, 47, 01, 59, 95, 39, 69, 39, 21, 99, 9, 87, 02, 97, 16, 92, 36, 74, 71, 90, 66, 33, 73, 73, 75, 52, 91, 11, 12, 26, 53, 05, 26, 26, 48, 61, 50, 90, 65, 01, 87, 42, 47, 74, 35, 22, 73, 24, 26, 56, 70, 52, 05, 48, 41, 31, 18, 83, 27, 21, 39, 80, 85, 26, 8, 44, 02, 71, 07, 63, 22, 05, 52, 19, 8, 20};
list[96] = {17, 25, 21, 11, 72, 93, 33, 49, 64, 23, 53, 82, 03, 13, 91, 65, 85, 02, 40, 05, 42, 31, 77, 42, 05, 36, 06, 54, 04, 58, 07, 76, 87, 83, 25, 57, 66, 12, 74, 33, 85, 37, 74, 32, 20, 69, 03, 97, 91, 68, 82, 44, 19, 14, 89, 28, 85, 85, 80, 53, 34, 87, 58, 98, 88, 78, 48, 65, 98, 40, 11, 57, 10, 67, 70, 81, 60, 79, 74, 72, 97, 59, 79, 47, 30, 20, 54, 80, 89, 91, 14, 05, 33, 36, 79, 39};
list[97] = {60, 85, 59, 39, 60, 07, 57, 76, 77, 92, 06, 35, 15, 72, 23, 41, 45, 52, 95, 18, 64, 79, 86, 53, 56, 31, 69, 11, 91, 31, 84, 50, 44, 82, 22, 81, 41, 40, 30, 42, 30, 91, 48, 94, 74, 76, 64, 58, 74, 25, 96, 57, 14, 19, 03, 99, 28, 83, 15, 75, 99, 01, 89, 85, 79, 50, 03, 95, 32, 67, 44, 8, 07, 41, 62, 64, 29, 20, 14, 76, 26, 55, 48, 71, 69, 66, 19, 72, 44, 25, 14, 01, 48, 74, 12, 98, 07};
list[98] = {64, 66, 84, 24, 18, 16, 27, 48, 20, 14, 47, 69, 30, 86, 48, 40, 23, 16, 61, 21, 51, 50, 26, 47, 35, 33, 91, 28, 78, 64, 43, 68, 04, 79, 51, 8, 19, 60, 52, 95, 06, 68, 46, 86, 35, 97, 27, 58, 04, 65, 30, 58, 99, 12, 12, 75, 91, 39, 50, 31, 42, 64, 70, 04, 46, 07, 98, 73, 98, 93, 37, 89, 77, 91, 64, 71, 64, 65, 66, 21, 78, 62, 81, 74, 42, 20, 83, 70, 73, 95, 78, 45, 92, 27, 34, 53, 71, 15};
list[99] = {30, 11, 85, 31, 34, 71, 13, 48, 05, 14, 44, 03, 19, 67, 23, 73, 19, 57, 06, 90, 94, 72, 57, 69, 81, 62, 59, 68, 88, 57, 55, 69, 49, 13, 07, 87, 97, 80, 89, 05, 71, 05, 05, 26, 38, 40, 16, 62, 45, 99, 18, 38, 98, 24, 21, 26, 62, 74, 69, 04, 85, 57, 77, 35, 58, 67, 91, 79, 79, 57, 86, 28, 66, 34, 72, 51, 76, 78, 36, 95, 63, 90, 8, 78, 47, 63, 45, 31, 22, 70, 52, 48, 79, 94, 15, 77, 61, 67, 68};
list[100] ={23, 33, 44, 81, 80, 92, 93, 75, 94, 88, 23, 61, 39, 76, 22, 03, 28, 94, 32, 06, 49, 65, 41, 34, 18, 23, 8, 47, 62, 60, 03, 63, 33, 13, 80, 52, 31, 54, 73, 43, 70, 26, 16, 69, 57, 87, 83, 31, 03, 93, 70, 81, 47, 95, 77, 44, 29, 68, 39, 51, 56, 59, 63, 07, 25, 70, 07, 77, 43, 53, 64, 03, 94, 42, 95, 39, 18, 01, 66, 21, 16, 97, 20, 50, 90, 16, 70, 10, 95, 69, 29, 06, 25, 61, 41, 26, 15, 59, 63, 35};
--Invert the list so all elements are 100 - element
invert(list);
foundPoints = {}; --This is a table of locations
foundPoints[1] = {xLocation = 1, yLocation = 1, total = list[1][1], fromRight = false};
possiblePoints = {}; --This is a table of locations
--Add the second row as possible points
possiblePoints[1] = {xLocation = 1, yLocation = 2, total = (list[1][1] + list[2][1]), fromRight = true};
possiblePoints[2] = {xLocation = 2, yLocation = 2, total = (list[1][1] + list[2][2]), fromRight = false};
foundBottom = false; --Used when you find a point at the bottom
--Loop until you find the bottom
while(not foundBottom) do
--Check which possible point gives us the lowest number. If more than one has the same number simply keep the first one
minLoc = possiblePoints[1];
for loc=1,#possiblePoints do
if(possiblePoints[loc].total < minLoc.total) then
minLoc = possiblePoints[loc];
end
end
--Remove it from the list of possible points
remove_if(possiblePoints, minLoc);
table.insert(foundPoints, minLoc);
--Add to the list of possible points from the point we just found and
--If you are at the bottom raise the flag to end the program
xLoc = minLoc.xLocation;
yLoc = minLoc.yLocation + 1; --Add one because you will always be moving to the next row
if(yLoc > NUM_ROWS) then
foundBottom = true;
else
table.insert(possiblePoints, {xLocation = xLoc, yLocation = yLoc, total = (minLoc.total + list[yLoc][xLoc]), fromRight = true});
xLoc = xLoc + 1; --Advance the x location to simulate going right
table.insert(possiblePoints, {xLocation = xLoc, yLocation = yLoc, total = (minLoc.total + list[yLoc][xLoc]), fromRight = false});
end
end
actualTotal = ((100 * (NUM_ROWS)) - foundPoints[#foundPoints].total);
--Stop the timer
timer:stop();
--Reinvert the list so it will print propperly
invert(list);
--Print the results
print("The value of the longest path is " .. actualTotal);
print("It took " .. timer:getSeconds() .. " seconds to run this algorithm");
--[[ Results:
The value of the longest path is 7273
It took 8.145 seconds to run this algorithm
]]

45
Problem7.lua Normal file
View File

@@ -0,0 +1,45 @@
--ProjectEuler/lua/Problem7.lua
--Matthew Ellison
-- Created: 02-05-19
--Modified: 03-28-19
--What is the 10001th prime number?
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
require "Algorithms"
timer = Stopwatch:create();
timer:start();
NUM_PRIMES = 10001; --The number of the prime number desired
--Get the correct number of primes
primes = getNumPrimes(NUM_PRIMES);
timer:stop();
--Print the results
print("The " .. NUM_PRIMES .. "th prime number is " .. primes[NUM_PRIMES]);
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results:
The 10001th prime number is 104743
It took 127.505 milliseconds to run this algorithm
]]

81
Problem8.lua Normal file
View File

@@ -0,0 +1,81 @@
--ProjectEuler/lua/Problem8.lua
--Matthew Ellison
-- Created: 02-06-19
--Modified: 03-28-19
--Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
--[[
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
]]
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
--Put the number into a variable. A string will do for now
NUMBER = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
local maxNum = ""; --Holds the largest number product we have found so far
local maxProduct = 0; --Holds the product of what is currently stored in maxNum
--Loop through all elements in the number string
for location=13,string.len(NUMBER) do
--Added 13 elements to it's own table
local currentProduct = string.sub(NUMBER, location, location) * string.sub(NUMBER, location - 1, location - 1) * string.sub(NUMBER, location - 2, location - 2) * string.sub(NUMBER, location - 3, location - 3) * string.sub(NUMBER, location - 4, location - 4) * string.sub(NUMBER, location - 5, location - 5) * string.sub(NUMBER, location - 6, location - 6) * string.sub(NUMBER, location - 7, location - 7) * string.sub(NUMBER, location - 8, location - 8) * string.sub(NUMBER, location - 9, location - 9) * string.sub(NUMBER, location - 10, location - 10) * string.sub(NUMBER, location - 11, location - 11) * string.sub(NUMBER, location - 12, location - 12);
--If the number is larger than the current max make it the max
if(currentProduct > maxProduct) then
maxProduct = currentProduct;
maxNum = string.sub(NUMBER, location - 12, location);
end
end
timer:stop();
--Print the results
print("The largest product of 13 adjacent digits in the number is " .. math.floor(maxProduct))
print("The numbers are " .. maxNum);
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results:
The largest product of 13 adjacent digits in the number is 23514624000
The numbers are 5576689664895
It took 2.662 milliseconds to run this algorithm
]]

72
Problem9.lua Normal file
View File

@@ -0,0 +1,72 @@
--ProjectEuler/lua/Problem9.lua
--Matthew Ellison
-- Created: 02-06-19
--Modified: 03-28-19
--There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.
--All of my requires, unless otherwise listed, can be found at https://bitbucket.org/Mattrixwv/luaClasses
--[[
Copyright (C) 2019 Matthew Ellison
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
]]
require "Stopwatch"
timer = Stopwatch:create();
timer:start();
local foundTriplet = false; --A simple flag to determine if we have found what we are looking for
local sideA = 1; --Start with the lowest possible a and search for the b that completes the triplet
local sideB = 0; --Holds the second side of the triangle
local sideC = 0; --Holds the hyp
while((sideA <= (1000 / 3)) and (not foundTriplet)) do
--Setup sides b and c
sideB = sideA + 1;
sideC = math.sqrt(sideA^2 + sideB^2); --Get the hyp
if((sideC % 1) == 0) then --If the hyp is an integer then make it one
sideC = math.floor(sideC);
end
--Loop through all possible b's and calculate c's until you find a number >= 1000
while((sideA + sideB + sideC) < 1000) do
sideB = sideB + 1;
sideC = math.sqrt(sideA^2 + sideB^2); --Get the hyp
if((sideC % 1) == 0) then --If the hyp is an integer then make it one
sideC = math.floor(sideC);
end
end
--Check if the correct sides were found, otherwise continue to the next possible side
if((sideA + sideB + sideC) == 1000) then
foundTriplet = true;
else
sideA = sideA + 1;
end
end
timer:stop();
--Print the results
if(foundTriplet) then
print("The Pythagorean triplet where a + b + c = 1000 is " .. sideA .. ' ' .. sideB .. ' ' .. sideC);
print("The product of those numbers is " .. sideA * sideB * sideC);
else
print("Could not find the Pythagorean triplet where a + b + c = 1000");
end
print("It took " .. timer:getMilliseconds() .. " milliseconds to run this algorithm");
--[[Results
The Pythagorean triplet where a + b + c = 1000 is 200 375 425
The product of those numbers is 31875000
It took 17.104 milliseconds to run this algorithm
]]