mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 09:33:58 -05:00
Added solution to problem 33
This commit is contained in:
99
Problem33.m
Normal file
99
Problem33.m
Normal file
@@ -0,0 +1,99 @@
|
||||
function [] = Problem33()
|
||||
%ProjectEuler/Octave/Problem33.m
|
||||
%Matthew Ellison
|
||||
% Created: 02-07-21
|
||||
%Modified: 02-07-21
|
||||
%{
|
||||
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that 49/98 = 4/8, which is correct, is obtained by cancelling the 9s
|
||||
We shall consider fractions like, 30/50 = 3/5, to be trivial examples
|
||||
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator
|
||||
If the product of these four fractions is given in its lowest common terms, find the value of the denominator
|
||||
%}
|
||||
%{
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%}
|
||||
|
||||
%Setup the variables
|
||||
MIN_NUMERATOR = 10;
|
||||
MAX_NUMERATOR = 98;
|
||||
MIN_DENOMINATOR = 11;
|
||||
MAX_DENOMINATOR = 99;
|
||||
NUMERATORS = [];
|
||||
DENOMINATORS = [];
|
||||
prodDenominator = 1;
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
|
||||
%Search every possible numerator/denominator pair
|
||||
for denominator = MIN_DENOMINATOR : MAX_DENOMINATOR
|
||||
for numerator = MIN_NUMERATOR : (denominator - 1)
|
||||
num = num2str(numerator);
|
||||
denom = num2str(denominator);
|
||||
tempNum = 0;
|
||||
tempDenom = 0;
|
||||
|
||||
%Check that this isn't a trivial example
|
||||
if((num(2) == '0') && (denom(2) == '0'))
|
||||
continue;
|
||||
elseif(num(1) == denom(1))
|
||||
tempNum = str2num(num(2));
|
||||
tempDenom = str2num(denom(2));
|
||||
elseif(num(1) == denom(2))
|
||||
tempNum = str2num(num(2));
|
||||
tempDenom = str2num(denom(1));
|
||||
elseif(num(2) == denom(1))
|
||||
tempNum = str2num(num(1));
|
||||
tempDenom = str2num(denom(2));
|
||||
elseif(num(2) == denom(2))
|
||||
tempNum = str2num(num(1));
|
||||
tempDenom = str2num(denom(1));
|
||||
end
|
||||
if(tempDenom == 0)
|
||||
continue;
|
||||
end
|
||||
|
||||
%Test if the new fraction is the same as the old one
|
||||
if((tempNum / tempDenom) == (numerator / denominator))
|
||||
numerators(end + 1) = numerator;
|
||||
denominators(end + 1) = denominator;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%Get the product of the numbers
|
||||
numProd = prod(numerators);
|
||||
denomProd = prod(denominators);
|
||||
%Get the gcd to reduce to lowest terms
|
||||
GCD = gcd(numProd, denomProd);
|
||||
%Save the denominator
|
||||
prodDenominator = denomProd / GCD;
|
||||
|
||||
|
||||
%Stop the timer
|
||||
endTime = clock();
|
||||
|
||||
%Print the results
|
||||
printf("The denominator of the product is %d\n", prodDenominator)
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
|
||||
end
|
||||
|
||||
%{
|
||||
Results:
|
||||
The denominator of the product is 100
|
||||
It took 4.728714 seconds to run this algorithm
|
||||
%}
|
||||
Reference in New Issue
Block a user