mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 09:33:58 -05:00
Added solution for problem 35
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
function [] = Problem34()
|
||||
%ProjectEuler/ProjectEulerOctave/Problem34.lua
|
||||
%Matthew Ellison
|
||||
% Createe: 06-01-21
|
||||
% Created: 06-01-21
|
||||
%Modified: 06-01-21
|
||||
%Find the sum of all numbers which are equal to the sum of the factorial of their digits
|
||||
%{
|
||||
@@ -22,13 +22,13 @@ function [] = Problem34()
|
||||
%}
|
||||
|
||||
%Setup the variables
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
MAX_NUM = 1499999; %The largest num that can be the sum of its own digits
|
||||
numberFactorials = []; %Holds the pre-computed factorials of the numbers 0-9
|
||||
totalSum = 0; %Holds the sum of all numbers equal to the sum of their digit's factorials
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
|
||||
%Pre-compute the possible factorials from 0! to 9!
|
||||
for cnt = 1 : 9
|
||||
numberFactorials(cnt) = factorial(cnt);
|
||||
|
||||
89
Problem35.m
Normal file
89
Problem35.m
Normal file
@@ -0,0 +1,89 @@
|
||||
function [] = Problem35()
|
||||
%ProjectEuler/ProjectEulerOctave/Problem35.lua
|
||||
%Matthew Ellison
|
||||
% Created: 06-05-21
|
||||
%Modified: 06-05-21
|
||||
%Find the sum of all numbers which are equal to the sum of the factorial of their digits
|
||||
%{
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%}
|
||||
|
||||
%Setup the variables
|
||||
MAX_NUM = 999999;
|
||||
%MAX_NUM = 100;
|
||||
circularPrimes = [];
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
|
||||
%Get all primes under 1,000,000
|
||||
primeList = primes(MAX_NUM);
|
||||
%Go through all primes, get all their rotations, and check if those numbers are also prime
|
||||
for cnt = 1 : size(primeList)(2)
|
||||
prime = primeList(cnt)
|
||||
allRotationsPrime = true;
|
||||
%Get all of the rotations of the pirme and see if they are also prime
|
||||
rotations = getRotations(num2str(prime));
|
||||
for rotCnt = 1 : size(rotations)(2)
|
||||
rotation = rotations(rotCnt);
|
||||
p = rotation;
|
||||
if(~isprime(p))
|
||||
allRotationsPrime = false;
|
||||
break;
|
||||
end
|
||||
end
|
||||
%If all rotations are prime add it to the list of circular primes
|
||||
if(allRotationsPrime)
|
||||
circularPrimes(end + 1) = prime;
|
||||
end
|
||||
end
|
||||
|
||||
%Stop the timer
|
||||
endTime = clock();
|
||||
|
||||
%Print the results
|
||||
printf("The number of all circular prime numbers under %d is %d\n", MAX_NUM, size(circularPrimes)(2));
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
|
||||
end
|
||||
|
||||
%Returns a list of all rotations of a string passed to it
|
||||
function [rotations] = getRotations(str)
|
||||
rotations = [];
|
||||
rotations(end + 1) = str2num(str);
|
||||
for cnt = 2 : size(str)(2)
|
||||
temp = [substr(str, 2, size(str)(2) - 1) str(1)(1)];
|
||||
num = str2num(temp);
|
||||
rotations(end + 1) = num;
|
||||
str = temp;
|
||||
end
|
||||
end
|
||||
|
||||
function [found] = isFound(array, key)
|
||||
found = false;
|
||||
for location = 1 : size(array)(2)
|
||||
if(key == array(location))
|
||||
found = true;
|
||||
return;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%{
|
||||
Results:
|
||||
The number of all circular prime numbers under 999999 is 55
|
||||
It took 712.060379 seconds to run this algorithm
|
||||
%}
|
||||
Reference in New Issue
Block a user