mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 17:43:57 -05:00
Updated problem 1 algorithm
This commit is contained in:
39
Problem1.m
39
Problem1.m
@@ -1,10 +1,11 @@
|
|||||||
|
function [] = Problem1()
|
||||||
%ProjectEuler/Octave/Problem1.m
|
%ProjectEuler/Octave/Problem1.m
|
||||||
%Matthew Ellison
|
%Matthew Ellison
|
||||||
% Created:
|
% Created: 03-28-19
|
||||||
%Modified: 03-28-19
|
%Modified: 10-26-20
|
||||||
%What is the sum of all the multiples of 3 or 5 that are less than 1000
|
%What is the sum of all the multiples of 3 or 5 that are less than 1000
|
||||||
%{
|
%{
|
||||||
Copyright (C) 2019 Matthew Ellison
|
Copyright (C) 2020 Matthew Ellison
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
This program is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU Lesser General Public License as published by
|
it under the terms of the GNU Lesser General Public License as published by
|
||||||
@@ -29,34 +30,24 @@ counter = 0; %The number. It must stay below 1000
|
|||||||
%Start the timer
|
%Start the timer
|
||||||
startTime = clock();
|
startTime = clock();
|
||||||
|
|
||||||
%When done this way it removes the possibility of duplicate numbers
|
%Get the sum of the progressions of 3 and 5 and remove the sum of progressions of the overlap
|
||||||
while(counter < 1000)
|
sumOfMultiples = sumOfProgression(3) + sumOfProgression(5) - sumOfProgression(3 * 5);
|
||||||
%See if the number is a multiple of 3
|
|
||||||
if(mod(counter, 3) == 0)
|
|
||||||
numbers(end + 1) = counter;
|
|
||||||
%See if the number is a multiple of 5
|
|
||||||
elseif(mod(counter, 5) == 0)
|
|
||||||
numbers(end + 1) = counter;
|
|
||||||
end
|
|
||||||
|
|
||||||
%Increment the number
|
|
||||||
++counter;
|
|
||||||
end
|
|
||||||
|
|
||||||
%Stop the timer
|
%Stop the timer
|
||||||
endTime = clock();
|
endTime = clock();
|
||||||
|
|
||||||
%Print the results
|
%Print the results
|
||||||
printf("The sum of all the numbers less than 1000 that is divisibly by 3 or 5 is: %d\n", sum(numbers))
|
printf("The sum of all the numbers less than 1000 that is divisibly by 3 or 5 is: %d\n", sumOfMultiples)
|
||||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||||
|
|
||||||
%Cleanup your variables
|
end %End of Problem1()
|
||||||
clear fullSum;
|
|
||||||
clear numbers;
|
%Gets the sum of the progression of the multiple
|
||||||
clear counter;
|
function [sum] = sumOfProgression(multiple)
|
||||||
clear startTime;
|
numTerms = floor(999 / multiple); %This gets the number of multiples of a particular number that is < MAX_NUMBER
|
||||||
clear endTime;
|
%The sum of progression formula is (n / 2)(a + l). n = number of terms, a = multiple, l = last term
|
||||||
clear ans;
|
sum = ((numTerms / 2) * (multiple + (numTerms * multiple)));
|
||||||
|
end %End of sumOfProgression
|
||||||
|
|
||||||
%{
|
%{
|
||||||
Results:
|
Results:
|
||||||
|
|||||||
Reference in New Issue
Block a user