mirror of
https://bitbucket.org/Mattrixwv/projecteuleroctave.git
synced 2025-12-06 17:43:57 -05:00
Updated problem 1 algorithm
This commit is contained in:
57
Problem1.m
57
Problem1.m
@@ -1,10 +1,11 @@
|
||||
function [] = Problem1()
|
||||
%ProjectEuler/Octave/Problem1.m
|
||||
%Matthew Ellison
|
||||
% Created:
|
||||
%Modified: 03-28-19
|
||||
% Created: 03-28-19
|
||||
%Modified: 10-26-20
|
||||
%What is the sum of all the multiples of 3 or 5 that are less than 1000
|
||||
%{
|
||||
Copyright (C) 2019 Matthew Ellison
|
||||
Copyright (C) 2020 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
@@ -21,42 +22,32 @@
|
||||
%}
|
||||
|
||||
|
||||
%Setup your variables
|
||||
fullSum = 0; %To hold the sum of all the numbers
|
||||
numbers = 0; %To hold all of the numbers
|
||||
counter = 0; %The number. It must stay below 1000
|
||||
%Setup your variables
|
||||
fullSum = 0; %To hold the sum of all the numbers
|
||||
numbers = 0; %To hold all of the numbers
|
||||
counter = 0; %The number. It must stay below 1000
|
||||
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
%Start the timer
|
||||
startTime = clock();
|
||||
|
||||
%When done this way it removes the possibility of duplicate numbers
|
||||
while(counter < 1000)
|
||||
%See if the number is a multiple of 3
|
||||
if(mod(counter, 3) == 0)
|
||||
numbers(end + 1) = counter;
|
||||
%See if the number is a multiple of 5
|
||||
elseif(mod(counter, 5) == 0)
|
||||
numbers(end + 1) = counter;
|
||||
end
|
||||
%Get the sum of the progressions of 3 and 5 and remove the sum of progressions of the overlap
|
||||
sumOfMultiples = sumOfProgression(3) + sumOfProgression(5) - sumOfProgression(3 * 5);
|
||||
|
||||
%Increment the number
|
||||
++counter;
|
||||
end
|
||||
%Stop the timer
|
||||
endTime = clock();
|
||||
|
||||
%Stop the timer
|
||||
endTime = clock();
|
||||
%Print the results
|
||||
printf("The sum of all the numbers less than 1000 that is divisibly by 3 or 5 is: %d\n", sumOfMultiples)
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
|
||||
%Print the results
|
||||
printf("The sum of all the numbers less than 1000 that is divisibly by 3 or 5 is: %d\n", sum(numbers))
|
||||
printf("It took %f seconds to run this algorithm\n", etime(endTime, startTime))
|
||||
end %End of Problem1()
|
||||
|
||||
%Cleanup your variables
|
||||
clear fullSum;
|
||||
clear numbers;
|
||||
clear counter;
|
||||
clear startTime;
|
||||
clear endTime;
|
||||
clear ans;
|
||||
%Gets the sum of the progression of the multiple
|
||||
function [sum] = sumOfProgression(multiple)
|
||||
numTerms = floor(999 / multiple); %This gets the number of multiples of a particular number that is < MAX_NUMBER
|
||||
%The sum of progression formula is (n / 2)(a + l). n = number of terms, a = multiple, l = last term
|
||||
sum = ((numTerms / 2) * (multiple + (numTerms * multiple)));
|
||||
end %End of sumOfProgression
|
||||
|
||||
%{
|
||||
Results:
|
||||
|
||||
Reference in New Issue
Block a user