mirror of
https://bitbucket.org/Mattrixwv/projecteulerpython.git
synced 2025-12-06 09:33:59 -05:00
Added solution to problem 38
This commit is contained in:
@@ -1,10 +1,10 @@
|
||||
#ProjectEulerPython/ProblemSelection.py
|
||||
#Matthew Ellison
|
||||
# Created: 07-19-20
|
||||
#Modified: 07-19-20
|
||||
#Modified: 10-20-21
|
||||
#This is the driver function for the Java version of the ProjectEuler project
|
||||
"""
|
||||
Copyright (C) 2020 Matthew Ellison
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
@@ -59,6 +59,7 @@ from Problems.Problem34 import Problem34
|
||||
from Problems.Problem35 import Problem35
|
||||
from Problems.Problem36 import Problem36
|
||||
from Problems.Problem37 import Problem37
|
||||
from Problems.Problem38 import Problem38
|
||||
from Problems.Problem67 import Problem67
|
||||
|
||||
|
||||
@@ -67,7 +68,7 @@ class ProblemSelection:
|
||||
problemNumbers = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
|
||||
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
|
||||
31, 32, 33, 34, 35, 36, 37, 67]
|
||||
31, 32, 33, 34, 35, 36, 37, 38, 67]
|
||||
|
||||
#Returns the problem corresponding to the given problem number
|
||||
@staticmethod
|
||||
@@ -146,6 +147,8 @@ class ProblemSelection:
|
||||
return Problem36()
|
||||
elif(problemNumber == 37):
|
||||
return Problem37()
|
||||
elif(problemNumber == 38):
|
||||
return Problem38()
|
||||
elif(problemNumber == 67):
|
||||
return Problem67()
|
||||
|
||||
|
||||
101
Problems/Problem38.py
Normal file
101
Problems/Problem38.py
Normal file
@@ -0,0 +1,101 @@
|
||||
#ProjectEuler/ProjectEulerPython/Problems/Problem38.py
|
||||
#Matthew Ellison
|
||||
# Created: 10-20-21
|
||||
#Modified: 10-20-21
|
||||
#What is the largest 1-9 pandigital number that can be formed as the concatenated product of an integer with 1, 2, ... n where n > 1
|
||||
#Unless otherwise listed, all of my non-standard imports can be gotten from my pyClasses repository at https://bitbucket.org/Mattrixwv/pyClasses
|
||||
"""
|
||||
Copyright (C) 2021 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
|
||||
from Problems.Problem import Problem
|
||||
import StringAlgorithms
|
||||
|
||||
|
||||
class Problem38(Problem):
|
||||
#Variables
|
||||
__highest_possible_number = 9999 #The highest number that needs to be checked for a 1-9 pandigital
|
||||
|
||||
#Functions
|
||||
#Constructor
|
||||
def __init__(self) -> None:
|
||||
super().__init__("What is the largest 1-9 pandigital number that can be formed as the concatenated product of an integer with 1, 2, ... n where n > 1")
|
||||
self.largestNum = 0
|
||||
self.pandigital = 0
|
||||
|
||||
#Operational functions
|
||||
#Take the number and add its multiples to a string to return
|
||||
def executeFormula(self, num: int) -> str:
|
||||
#Turn the current number into a string
|
||||
numStr = str(num)
|
||||
numStr += str(num * 2)
|
||||
#Multiply the number and append the product to the string until you have one long enough
|
||||
cnt = 3
|
||||
while(len(numStr) < 9):
|
||||
numStr += str(num * cnt)
|
||||
cnt += 1
|
||||
return numStr
|
||||
#Solve the problem
|
||||
def solve(self) -> None:
|
||||
#If the problem has already been solved do nothing and end the function
|
||||
if(self.solved):
|
||||
return
|
||||
|
||||
#Start the timer
|
||||
self.timer.start()
|
||||
|
||||
|
||||
#Loop from 1 -> __highest_possible_num checking for pandigitals
|
||||
for cnt in range(1, self.__highest_possible_number + 1):
|
||||
#Get the string from the formula
|
||||
numStr = self.executeFormula(cnt)
|
||||
panNum = int(numStr)
|
||||
#If the number is pandigital save it as the highest number
|
||||
if(StringAlgorithms.isPandigital(numStr) and (panNum > self.pandigital)):
|
||||
self.largestNum = cnt
|
||||
self.pandigital = panNum
|
||||
|
||||
|
||||
#Stop the timer
|
||||
self.timer.stop()
|
||||
|
||||
#Throw a flag to show the problem is solved
|
||||
self.solved = True
|
||||
|
||||
#Reset the problem so it can be run again
|
||||
def reset(self) -> None:
|
||||
super().reset()
|
||||
|
||||
#Gets
|
||||
#Returns a string with the solutino to the problem
|
||||
def getResult(self) -> str:
|
||||
self.solvedCheck("result")
|
||||
return f"The largest appended product pandigital is {self.pandigital}"
|
||||
#Returns the largest number
|
||||
def getLargestNum(self) -> int:
|
||||
self.solvedCheck("largest number")
|
||||
return self.largestNum
|
||||
#Returns the pandigital of the number
|
||||
def getPandigital(self) -> int:
|
||||
self.solvedCheck("pandigital")
|
||||
return self.pandigital
|
||||
|
||||
|
||||
""" Results:
|
||||
The largest appended product pandigital is 932718654
|
||||
It took an average of 9.886 milliseconds to run this problem through 100 iterations
|
||||
"""
|
||||
Reference in New Issue
Block a user