mirror of
https://bitbucket.org/Mattrixwv/projecteulerrust.git
synced 2025-12-06 17:43:58 -05:00
Created solution to problem32
This commit is contained in:
@@ -54,13 +54,14 @@ pub mod Problem28;
|
||||
pub mod Problem29;
|
||||
pub mod Problem30;
|
||||
pub mod Problem31;
|
||||
pub mod Problem32;
|
||||
pub mod Problem67;
|
||||
|
||||
|
||||
pub static problemNumbers: [u32; 33] = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
pub static problemNumbers: [u32; 34] = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||||
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
||||
30, 31, 67];
|
||||
30, 31, 32, 67];
|
||||
pub static tooLong: [u32; 7] = [3, 5, 15, 23, 24, 25, 27];
|
||||
|
||||
pub fn solveProblem(problemNumber: u32, description: bool, solve: bool) -> Answer::Answer{
|
||||
@@ -317,6 +318,14 @@ pub fn solveProblem(problemNumber: u32, description: bool, solve: bool) -> Answe
|
||||
answer = Problem31::solve();
|
||||
}
|
||||
}
|
||||
else if(problemNumber == 32){
|
||||
if(description){
|
||||
println!("{}", Problem32::getDescription());
|
||||
}
|
||||
if(solve){
|
||||
answer = Problem32::solve();
|
||||
}
|
||||
}
|
||||
else if(problemNumber == 67){
|
||||
if(description){
|
||||
println!("{}", Problem67::getDescription());
|
||||
|
||||
120
src/Problems/Problem32.rs
Normal file
120
src/Problems/Problem32.rs
Normal file
@@ -0,0 +1,120 @@
|
||||
//ProjectEuler/ProjectEulerRust/src/Problems/Problems32.rs
|
||||
//Matthew Ellison
|
||||
// Created: 07-28-20
|
||||
//Modified: 07-28-20
|
||||
//Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.
|
||||
//Unless otherwise listed all non-standard includes are my own creation and available from https://bibucket.org/Mattrixwv/RustClasses
|
||||
/*
|
||||
Copyright (C) 2020 Matthew Ellison
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
use crate::Problems::Answer::Answer;
|
||||
|
||||
|
||||
pub fn getDescription() -> String{
|
||||
"Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.".to_string()
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct ProductSet{
|
||||
pub multiplicand: i32,
|
||||
pub multiplier: i32
|
||||
}
|
||||
impl ProductSet{
|
||||
pub fn new(first: i32, second: i32) -> ProductSet{
|
||||
let set = ProductSet{multiplicand: first, multiplier: second};
|
||||
return set;
|
||||
}
|
||||
pub fn getProduct(&self) -> i64{
|
||||
return (self.multiplicand as i64 * self.multiplier as i64);
|
||||
}
|
||||
pub fn getNumString(&self) -> String{
|
||||
return format!("{}{}{}", self.multiplicand, self.multiplier, self.getProduct());
|
||||
}
|
||||
}
|
||||
impl PartialEq for ProductSet{
|
||||
fn eq(&self, other: &Self) -> bool{
|
||||
return (self.getProduct() == other.getProduct());
|
||||
}
|
||||
}
|
||||
|
||||
//Solve the problem
|
||||
pub fn solve() -> Answer{
|
||||
//Setup the variables
|
||||
let TOP_MULTIPLICAND = 99; //The largest multiplicand to check
|
||||
let TOP_MULTIPLIER = 4999; //The largest multiplier to check
|
||||
let mut listOfProducts = Vec::<ProductSet>::new(); //The list of unique products that are 1-9 pandigital
|
||||
|
||||
//Start the timer
|
||||
let mut timer = myClasses::Stopwatch::Stopwatch::new();
|
||||
timer.start();
|
||||
|
||||
//Create the multiplicand and start working your way up
|
||||
for multiplicand in 1..=TOP_MULTIPLICAND{
|
||||
//Run through all possible multipliers
|
||||
for multiplier in multiplicand..=TOP_MULTIPLIER{
|
||||
let currentProductSet = ProductSet::new(multiplicand, multiplier);
|
||||
//If the product is too long move on to the next possible number
|
||||
if(currentProductSet.getNumString().len() > 9){
|
||||
break;
|
||||
}
|
||||
//If the current number is a pandigital that doesn't already exist in the list add it
|
||||
if(isPandigital(¤tProductSet)){
|
||||
if(!listOfProducts.contains(¤tProductSet)){
|
||||
listOfProducts.push(currentProductSet);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Get the sum of the products of the pandigitals
|
||||
let mut sumOfPandigitals = 0;
|
||||
let numOfPandigitals = listOfProducts.len(); //This exists because it doesn't like to put this value in the format statement after the for loop
|
||||
for prod in listOfProducts{
|
||||
sumOfPandigitals += prod.getProduct();
|
||||
}
|
||||
|
||||
//Stop the timer
|
||||
timer.stop();
|
||||
|
||||
//Return the results
|
||||
return Answer::new(format!("There are {} unique 1-9 pandigitals\nThe sum of the products of the pandigitals is {}", numOfPandigitals, sumOfPandigitals), timer.getString(), timer.getNano());
|
||||
}
|
||||
//Returns true if the passed productset is 1-9 pandigital
|
||||
pub fn isPandigital(currentSet: &ProductSet) -> bool{
|
||||
//Get the numbers out of the object and put them into a string
|
||||
let numberString = currentSet.getNumString();
|
||||
//Make sure the string is the correct length
|
||||
if(numberString.len() != 9){
|
||||
return false;
|
||||
}
|
||||
//Make sure every number from 1-9 is contained exactly once
|
||||
for panNumber in 1..=9{
|
||||
//Make sure there is exactly one of this number contained in the string
|
||||
if(numberString.matches(format!("{}", panNumber).as_str()).count() != 1){
|
||||
return false;
|
||||
}
|
||||
}
|
||||
//If all numbers were found in the string return true
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Results:
|
||||
There are 7 unique 1-9 pandigitals
|
||||
The sum of the products of the pandigitals is 45228
|
||||
It took an average of 28.795 milliseconds to run this problem through 100 iterations
|
||||
*/
|
||||
Reference in New Issue
Block a user